
SIGNAL PROCESSING AND COMMUNICATIONS LABORATORY

DEPARTMENT OF ENGINEERING

COMPUTER GRAPHICS USING CONFORMAL

GEOMETRIC ALGEBRA

Richard James Wareham
Robinson College

November 2006

A dissertation submitted to the

UNIVERSITY OF CAMBRIDGE

for the degree of

DOCTOR OF PHILOSOPHY

Copyright c©2014 Richard James Wareham.

This thesis contains no more than
umprint48550 words.

Typeset using the LATEX document preparation system in the Sabon, Georgia
and Computer Modern fonts.

SIGNAL PROCESSING AND COMMUNICATIONS LABORATORY,
Department of Engineering,
University of Cambridge,
Trumpington Street,
Cambridge, CB2 1PZ, U.K.

- i -

To my parents and
all those that helped

me get here

- ii -

Contents

1 Introduction 1
1.1 Non-Euclidean geometries . 3
1.2 Fractals . 3
1.3 Rotor exponentiation . 3
1.4 GPU-based techniques . 4

2 An Overview of Geometric Algebra 5
2.1 A Brief Overview of Geometric Algebra 5

2.1.1 The products . 6
2.1.2 Rotation via Rotors . 9
2.1.3 Relation to quaternions 13
2.1.4 The Conformal Model of Geometric Algebra 14
2.1.5 Observations . 26

2.2 Existing implementations . 27
2.2.1 CLUCalc & CLUDraw 27
2.2.2 Gaigen . 28
2.2.3 Cambridge GA library for Maple 29

2.3 Existing uses . 30

3 Objects in the Conformal Representation 31
3.1 A note on methodology . 32

Contents

3.2 The equation of a line . 33
3.3 The equation of a plane . 34
3.4 The role of inversion: lines and circles 35
3.5 Vectors and 2-blades . 39

3.5.1 Extracting A and B from A∧B 40
3.6 Trivectors . 43

3.6.1 Circles as trivectors . 44
3.6.2 Lines as trivectors . 50

3.7 4-Vectors . 52
3.7.1 Spheres as 4-vectors . 53
3.7.2 Planes as 4-vectors . 55

3.8 Intersections . 56
3.8.1 Intersecting spheres with spheres or planes 56
3.8.2 Intersecting spheres with circles or lines 57
3.8.3 Intersecting planes with planes, circles and lines . . . 59
3.8.4 Intersecting circles with circles and lines 61
3.8.5 Intersecting lines with lines 62

3.9 Chapter summary . 67

4 LibCGA — A Library for Implementing GA-based Algorithms 68
4.1 Requirements . 68
4.2 Overview . 70
4.3 Implementation Details . 71

4.3.1 Coding style . 71
4.3.2 Product Table Generation 73
4.3.3 Grade Tracking . 74

4.4 Visualising Objects within the Algebra 78
4.4.1 Point Pairs . 78
4.4.2 Lines . 78
4.4.3 Planes . 79
4.4.4 Circles . 80
4.4.5 Spheres . 81

4.5 Chapter summary . 82

- iv -

Contents

5 Non-Euclidean Techniques 83
5.1 Hyperbolic Geometry . 84
5.2 Extending the Conformal Model 85

5.2.1 Geometric Objects in Hyperbolic Geometry 98
5.2.2 Extension to Higher Dimensions and Other Geometries 105

5.3 Non-Euclidean Visualisation Methods 106
5.3.1 NURBs . 106
5.3.2 Rendering d-lines . 108
5.3.3 Rendering ‘d-planes’ . 110

5.4 Chapter summary . 114

6 Generating Fractals using Geometric Algebra 115
6.1 Fractals from Complex Iteration 116

6.1.1 The Mandelbrot Set . 118
6.1.2 The Julia Set . 120

6.2 Extending Complex Numbers 121
6.3 Moving to Higher Dimensions 122

6.3.1 The Generalised Mandelbrot Set 123
6.3.2 The Generalised Julia Set 124
6.3.3 Ray Tracing . 126

6.4 Moving to Hyperbolic Geometry 129
6.4.1 The Hyperbolic Mandelbrot Set 133
6.4.2 The Hyperbolic Julia Set 133

7 Rotors as Exponentiated Bivectors 137
7.1 Form of exp(B) in Euclidean space 139
7.2 Checking exp(B) is a rotor . 144
7.3 Method for evaluating `(R) . 146
7.4 Mapping Generators to Matrices 148

7.4.1 Method . 149
7.4.2 Finding H from a generator 151
7.4.3 Mapping H to the corresponding generator 154

7.5 Chapter summary . 157

- v -

Contents

8 Rotor Interpolation 158
8.1 Interpolation via Generators . 158

8.1.1 Piece-wise linear interpolation 159
8.1.2 Quadratic interpolation 160
8.1.3 Alternate methods . 162
8.1.4 Interpolation of dilations 162

8.2 Form of the Interpolation . 163
8.2.1 Path of the linear interpolation 164
8.2.2 Pose of the linear interpolation 168

8.3 Chapter summary . 168

9 Hardware Assisted Geometric Algebra on the GPU 169
9.1 An Overview of GPU Architecture 170
9.2 GPU Programming Methods 171

9.2.1 DirectX shader language 171
9.2.2 OpenGL shader language 172
9.2.3 The Cg toolkit from nVidia 173

9.3 A Cg Implementation of Generator Exponentiation 174
9.4 Mesh Deformation . 176

9.4.1 Method . 176
9.4.2 GPU-based implementation 179
9.4.3 Quality of the deformation 182
9.4.4 Performance . 182

9.5 Dynamics . 188
9.5.1 Collision detection via deformation 190
9.5.2 A suitable deformation scheme 192
9.5.3 Implementation . 194

9.6 Chapter summary . 197

10 Conclusions and Future Work 202
10.1 Review of Achievements . 202

10.1.1 Non-Euclidean geometries 202
10.1.2 Fractals . 203
10.1.3 Rotor exponentiation . 203

- vi -

Contents

10.1.4 GPU-based techniques 204
10.2 Future work . 205

- vii -

List of Figures

2.1 Illustration of bi- and trivectors 6
2.2 The rotation effect of bivector B = ee 9
2.3 Rotating vectors in arbitrary planes 11

3.1 An illustration of the inversion of points on the line x =  (L)
in the unit circle centred on the origin. It produces a circle
centred on ( ,) and with radius 

 . The points at infinity on
the line L map to the origin. 37

3.2 Unit circle with three key points marked 44
3.3 The rotation of intersecting lines to produce two lines inter-

secting at right angles, via the construction L−LLL. 64

4.1 Example product matrix for the geometric product in A(,).
Ai j...k is the element of A proportional to eie j...ek. 70

4.2 Object-orientation in C. 72
4.3 Example of finding that ee = e with e =−, e = . . . 74
4.4 The method of grade tracking represented graphically. The

shaded numbers represent the grades present in each multi-
vector. 77

4.5 Extracting and rendering a point pair. 79
4.6 Rendering the representation of a line, L. 80

LIST OF FIGURES

4.7 Rendering the representation of a circle, C. 81

5.1 A re-creation of Escher’s Circle Limit III, a depiction of hyper-
bolic geometry on the Poincaré disc. Taken from [18]. 85

5.2 An illustration of how translation, interpreted as movement
along geodesics, in hyperbolic geometry is non-commutative. 90

5.3 Geodesics emanating from a point in hyperbolic space. They
all intersect the unit circle at right angles and each is in fact the
arc of a circle. (λ =  has been taken here.) 96

5.4 A set of control points and a typical example of an associated
NURBS curve. Note that the endpoints of the curve are tan-
gential to PP and PP and that the curve is within the convex
hull of the points (shaded). 107

5.5 NURBS-based rendering of d-lines. Here O is the origin and A
and B are the boundary points of the line L. 109

5.6 NURBS rendering of d-lines in action. 110
5.7 d-planes are caps of the corresponding Euclidean sphere. . . . 112

6.1 The well known (a) Mandelbrot set with the constant c = .+

.i marked and (b) the Julia set associated with c. 117
6.2 Generating the Mandelbrot set 119
6.3 Generating the Julia set . 120
6.4 Generating the Generalised Mandelbrot set 124
6.5 Two frames from an animation showing slices through the 3

dimensional Mandelbrot set. 125
6.6 Two frames from an animation showing voxel rendering of 3d

Julia sets. 125
6.7 Generating the Generalised Julia set 126
6.8 A crude form of voxel rendering. (a) A specific slice through

the set. (b) Viewed from an oblique angle. (c) Stacked with
other slices giving the impression of a three dimensional shape.

. 127
6.9 A ray-traced three-dimensional slice through a five-dimensional

Julia set. 128

- ix -

LIST OF FIGURES

6.10 The geometrical interpretation of r 7→ rer as a rotation fol-
lowed by a dilation. 130

6.11 The non-Euclidean analogue of the (a) Mandelbrot set with the
constant c = .e+ .e marked and (b) the Julia set associ-
ated with c. 132

6.12 A montage of hyperbolic Julia sets where the constant c moves
from −.e− .e to .e+ .e. In this figure translation
x 7→ x+ c is performed by applying a translation rotor corre-
sponding to c to the vector x. 134

6.13 A montage of hyperbolic Julia sets where the constant c moves
from −.e− .e to .e+ .e. In this figure translation
x 7→ x+ c is performed by applying a translation rotor corre-
sponding to x to the vector c. 135

7.1 Reconstruction of a generator from a × transformation matrix.156

8.1 Rotors used to piece-wise linearly interpolate between key-
rotors. 159

8.2 Examples of a) piece-wise linear and b) quadratic interpola-
tion for three representative poses. 161

8.3 Orthonormal basis resolved relative to P. 164
8.4 Example of an interpolant path with the final location being

given by t‖ = a+b, φ = π and t⊥ having a magnitude of 1. . 166

9.1 A simplified block diagram of a typical GPU. 170
9.2 The Cg and C interfaces for dealing with rotors and exponen-

tiated generators. 175
9.3 Representing a point, Pi, on a mesh as a rotor, Ri, and displace-

ment, pi, given a set of key rotors, {R,R}. 177
9.4 The vertex shader used to perform GA-based mesh deformation.180
9.5 Algorithm for computing w(dk,i) and pi for each mesh point

and storing them in the texture co-ordinates and vertex posi-
tion. In this case there are eight key rotors. 181

9.6 An example of animating a rabbit’s head using key rotors and
an automatically assigned mesh. 183

- x -

LIST OF FIGURES

9.7 An example of mesh deformation acting on a unit cube. (a) Ini-
tial key rotors and automatically assigned mesh. (b) Deformed
mesh after movement of key rotors. 184

9.8 An example of screw deformation acting on a unit cube. (a)
Initial key rotors and automatically assigned mesh. (b) Twisted
mesh after movement of key rotors. 185

9.9 A plot of the ratio between FPS using the GPU-based imple-
mentation and the pure-software implementation. 186

9.10 Given a deformation scheme D which maps our object to the
unit sphere we can tell whether a point, P, is inside the object
by testing if the mapped point, P ′, is inside the sphere. 189

9.11 Diagram illustrating weighted generator deformation around
a point P. a) Un-deformed state. b) Effect of weighted rotation
deformation. 193

9.12 The pixel shader for summing the forces on the cloth vertices
and removing normal components of velocity. 196

9.13 The pixel shader used to update the vertex position and cor-
rect for penetration. 199

9.14 The vertex shader utility functions for mapping to and from a
rotor-deformed space. 200

9.15 A selection of scenes from the penetration demo showing the
simulation of a simple cloth model on the surface of a de-
formed sphere. 201

- xi -

List of Tables

2.1 Example TEX output from Gaigen 29

4.1 Multiplication count for finding the geometric product of an
r-vector and s-vector. 75

9.1 The relative performance, in frames per second, between the
GPU and pure-software mesh deformation implementations. . 186

“A good Christian should beware that
mathematicians, and any others who
prophesy impiously... may be entangled in
the companionship of demons.”

— St Augustine

Introduction

1

It is generally accepted that a four-dimensional projective description of three-

dimensional Euclidean geometry can have various advantages, particularly

when intersections of planes and lines are required. Such projective descrip-

tions are used extensively in computer vision and graphics where rotations

and translations are usually described by a single × matrix. Since its incep-

tion in the mid-1970s, computer graphics (CG) has almost universally used

linear vector algebra as its mathematical framework. This is due primarily to

two factors: most early practitioners of computer graphics were mathemati-

cians familiar with it; and linear algebra provided a compact, efficient way

of representing points, transformations, lines, etc.

In the early 1980s CG moved out of the realm of Computer Science re-

search and started to be used in the broader scientific community as an im-

portant research tool both for simulation and visualisation. Computer Graph-

ics was then, and to an extent still is, tied to classical vector algebra which

has started to show a number of flaws when applied to the problems being

Introduction

investigated. Amongst these problems were: poor generalisation to spaces

other than R; great conceptual difficulty in extending problems to non-

Euclidean geometries; and manipulating geometric objects other than simple

lines, planes and points.

As computing power becomes cheaper, the opportunity arises to inves-

tigate new frameworks for CG which, although perhaps not providing the

time and space efficiency of vector algebra, may provide a conceptually sim-

pler system or one of greater analytical power. This thesis investigates the

suitability of Geometric Algebra (GA) as one such approach. As one might

hope, the original four-dimensional description of projective geometry fits

very nicely into the Geometric Algebra framework[30, 36].

This thesis investigates the emerging field of Conformal Geometric Algebra

(CGA) as a new basis for a CG framework. Computer Graphics is, funda-

mentally, a particular application of geometry. From a practical standpoint

many of the low-level problems to do with rasterising triangles and project-

ing a three-dimensional world onto a computer screen have been solved and

hardware especially designed for this task is available.

In the following chapters we start by assuming that good solutions to

these problems are available and we investigate the use of CGA as a geomet-

ric building block sitting above the hardware. It is convenient that we may

draw several million triangles in 3d space onto the screen but what if we

wish to visualise a geometry other than Euclidean? Similarly we can draw

several hundred characters onto the screen but this does not help us detect

- 2 -

Introduction

intersections.

Consequently this work aims to investigate how CGA may help in these

tangential CG problems and how problems that are not necessarily of tradi-

tional interest, e.g. the depiction of non-Euclidean geometries, may be tack-

led.

Within the thesis we tackle the following problems.

1.1 Non-Euclidean geometries

In chapter 5, we shall discuss and present a framework for visualising non-

Euclidean geometries. We shall particularly emphasise hyperbolic geometry

due to its novelty in the CG field and show how the treatment of the geome-

try in CG can relate to existing work[57] in representing spherical geometries.

1.2 Fractals

In chapter 6 we shall discuss an extension of complex number and their geo-

metric analogue in hyperbolic space. As a simple application the generalisa-

tion of escape-time fractals to hyperbolic geometry will be shown.

1.3 Rotor exponentiation

In chapter 7 we shall extend some work[54] on the representation of rigid-

body transforms via a 6 degree of freedom linear parameter space. Impor-

tantly, for application to existing systems, we show how we may map to

- 3 -

Introduction

and from this representation and the × transformation matrices used in a

number of existing systems.

The ability to map a description of rigid-body transformations into a lin-

ear space is immensely useful when attempting to smoothly interpolate pose

and position. Similarly being able to extend many algorithms which work in

a linear parameter space to position and pose allows a great many optimisa-

tion algorithms to be extended to cover rotation and translation naturally.

1.4 GPU-based techniques

In chapter 9 the techniques developed in chapter 7 are implemented on a

commercial graphics processing unit (GPU). Simple mesh deformation and

collision detection examples are shown. The examples aim to show that not

only is GA a natural language for developing such algorithms that they are

also compact enough to satisfy the space constraints of real consumer-grade

hardware.

- 4 -

“You know we all became mathematicians for
the same reason: we were lazy.”

— Max Rosenlicht

An Overview of Geometric Algebra

2

In this chapter we present a brief overview of Geometric Algebra and how it

may be used in a number of applications.

2.1 A Brief Overview of Geometric Algebra

As stated in the introduction, classical vector algebra has a number of prob-

lems once one moves away from three dimensional Euclidean space. Perhaps

the clearest example is the cross-product of two vectors: for two vectors a,b

with lengths a,b, the product, a×b, is conventionally defined as a vector nor-

mal to the plane containing a and b and has magnitude absinθ where θ is the

angle between a and b. However the normal to the plane is only uniquely de-

fined in three dimensions and has no meaning in 2- or 1-dimensional space;

the cross-product does not generalise to higher-dimension spaces. The prod-

uct is an important element of vector algebra and one can see that performing

geometric operations in higher spaces without it quickly becomes complex.

An Overview of Geometric Algebra

a ∧ b ∧ c
b

a
b

a
c

a ∧ b

Figure 2.1: Illustration of bi- and trivectors

2.1.1 The products

It was in an attempt[25] to create an algebra of vectors which did generalise

to higher spaces that a German schoolteacher named Hermann Graßmann

(1809–1877) created an exterior or outer product of two vectors denoted as

a∧b. For the remainder of this thesis we have dropped the usual convention

of emboldening vectors since in GA they lie in the same algebra as scalars

and do not need to be differentiated; the nature of the element is either stated

explicitly or clear from context.

Graßmann’s outer product is usually visualised geometrically as the move-

ment of one vector along the other to form a ‘directed area’. This is a new

object, neither a vector nor a scalar. It is termed a bivector. Similarly one may

form the outer product of this bivector with another vector to form a directed

volume, a trivector, or generally a n-volume termed an n-vector.

To differentiate between scalars, vectors, bivectors, etc we say that a scalar

is grade 0, a vector is grade 1, a bivector (formed from two vectors) is grade

2, etc. A n-vector has grade n.

- 6 -

An Overview of Geometric Algebra

The usual geometric visualisation is illustrated in figure 2.1. It is worth

noting that other visualisations may be more appropriate for a specific ap-

plication so the reader should not assume a bivector can only represent a

directed area.

A key feature of GA is that the outer-product is anti-commutative and

associative giving

a∧b =−(b∧a) and a∧ (b∧ c) = (a∧b)∧ c = a∧b∧ c.

Most of Graßmann’s work was largely ignored by the mathematical com-

munity. It was not until William Clifford (1845–1879) investigated Graß-

mann’s algebra in 1878[13] that the crucial step which made GA a useful

algebra was made. Unfortunately Clifford’s work was, in its turn, also some-

what ignored in favour of the contemporary work done by William Hamilton

(1805–1865) on quaternions and the development of linear and vector alge-

bra. In fact, as we shall see later, quaternions are simply a natural subset of

the full Geometric Algebra over R.

Clifford unified Graßmann’s outer product and the familiar dot or inner-

product into one geometric product such that

ab = a ·b+a∧b.

An algebra with this product is usually termed a Clifford algebra. We shall use

the term Geometric Algebra to mean the coupling of Clifford algebras with an

accompanying geometric interpretation.

A second glance at the geometric product shows an interesting feature

which should be noted. In the expression above we are adding a scalar (a ·b)

- 7 -

An Overview of Geometric Algebra

to a bivector (a∧ b). That is we are adding a grade 0 element to a grade 2

element. This combination of differing grade objects is analogous to complex

numbers where we linearly combine a real and imaginary number to form

a complex number. In this case we refer to such a combination of objects

of varying grade as a multivector. We shall refer to all single-grade elements

with lower-case letters but use upper-case letters to refer to multivectors. The

geometric product also gives us a convenient new definition of the outer and

inner products for vectors as

a∧b =



(ab−ba) and

a ·b =



(ab+ba).

The power of this approach may be illustrated through its application to

rotation. In two dimensions this is easily performed using complex num-

bers; representing the vector [x y] as the complex number z = x+ iy, rotation

by θ radians can be performed by multiplication with eiθ. Hamilton worked

for many years to extend this approach to three-dimensions. He eventually

created quaternions [26, 27], an algebra with 4 basis elements {, i, j,k} from

which all elements are generated through linear combination. This alge-

bra, although functional, lacked an obvious geometrical interpretation and

again didn’t generalise easily to higher-dimensions. We shall visit quater-

nions later and show how they relate to GA.

- 8 -

An Overview of Geometric Algebra

e1

e2

e1 + e2

e3

e2 − e1

Figure 2.2: The rotation effect of bivector B = ee

2.1.2 Rotation via Rotors

To demonstrate Clifford’s approach, consider any three orthonormal basis

vectors of R, {e,e,e}. We can form 3 different bivectors from these vectors:

B = ee, B = ee, B = ee.

Note that these are indeed bivectors since the basis vectors are orthogonal

and

eie j = ei · e j + ei ∧ e j = ei ∧ e j iff i 6= j

Now consider the effect of B on the vectors e and e+ e:

eB = ee = e

(e+ e)B = eB+ eB = e+ eee = e− ee = e− e

From figure 2.2 it is clear that B has the effect of rotating the vectors

counter-clockwise by 90 degrees. It is, in fact, a general property that the

bivector eie j will rotate a vector 90 degrees in the plane defined by ei and e j.

- 9 -

An Overview of Geometric Algebra

At first glance this seems to no more use than quaternions, but at no point

have we assumed that we are working in three dimensional space – in fact

this method also works in higher-dimension spaces.

We can also easily extend to general rotations; it is trivial to show that B

squares to −:

B
 = eeee =−eeee =−

We can represent any vector x in the plane defined by e and e using

x = r(e cosθ+ e sinθ)

= er(cosθ+B sinθ)

where r is the distance of the point x from the origin (i.e. r =
√

x) and θ is the

angle x makes with e. By taking the Taylor expansion of cosine and sine and

re-arranging the coefficients it can be shown that

eBθ = cosθ+B sinθ

which is the GA analogue of de Moivre’s theorem for complex numbers.

We can thus represent any vector x which lies in the plane of the bivector

B by

x = ereBθ

From this the same argument used for rotation in the complex plane can

be used to show that rotation by φ radians in the plane of B is accomplished

by x 7→ x ′ where

x ′ = xeBφ = x(cosφ+B sinφ)

- 10 -

An Overview of Geometric Algebra

e2

e1

B

φ

Plane of rotation

x

RxR−1

Figure 2.3: Rotating vectors in arbitrary planes

This has all taken place in two dimensions for the moment but nothing

in our discussion has assumed this. In fact we can specify a unit bivector

B = ab in three dimensions and rotate vectors in the place defined by a and

b using the expression above.

Careful consideration must be given to the case where the vector to be

rotated, x, does not lie on the plane of rotation as in figure 2.3. Firstly decom-

pose the vector into a component which lies in the plane x‖ and one normal

to the plane x⊥

x = x‖+ x⊥

- 11 -

An Overview of Geometric Algebra

Now consider the effect of the following

e−Bφ/xeBφ/ =

(
cos

φ


−B sin

φ



)
(x‖+ x⊥)

(
cos

φ


+B sin

φ



)
= x‖(cosφ+B sinφ)+ x⊥

since bivectors anti-commute with vectors in their plane (e.g. e(ee) =

−e=−(ee)e) and commute with vectors normal to the plane (e.g. e(ee)=

(ee)e). We have thus succeeded in rotating the component of the vector

which lies in the plane without affecting the component normal to the plane

— we have rotated the vector around an axis normal to the plane.

This leads to a general method of rotation in any plane; we form a bivector

of the form R = exp(−Bφ/) for a given rotation φ in a plane specified by the

unit bivector B. The transformation is therefore performed by

x 7→ RxR−.

We refer to these bivectors which have a rotational effect as rotors. Figure 2.3

shows the various objects used. Later we shall extend the term rotor to refer

to an element of the algebra which performs some well defined transforma-

tion.

Computing R− is rather difficult analytically and can sometimes require

a full n-dimension matrix inversion for a space of dimension n. To combat

this we define the reversion of a n-vector X = eie j...ek as

X̃ = ek...e jei

i.e. the literal reversion of the components. By looking at the expression for

R it is clear that R̃ ≡ R− for rotors. Computing R̃ is easier since it generally

- 12 -

An Overview of Geometric Algebra

just involves changing the sign of components when an element is resolved

onto a set of basis elements.

Note that in spaces with dimension n, the maximum grade object possible

is an n-grade one. We denote the n-vector e∧ ...∧ en = I as the pseudoscalar

and, for any element of the algebra, x, we term the product xI the dual of

x represented as x∗. The dual is similarly defined for general multivectors.

The pseudoscalar is so termed because it commutes with all elements of the

algebra.

2.1.3 Relation to quaternions

It is worth comparing this method of rotation to rotation via quaternions.

The three bivectors B,B and B act identically to the three ‘imaginary’ com-

ponents of quaternions, i,−j and k respectively. The sign difference between

B and j is due to the fact that the quaternions are not derived from the usual

right-handed orthogonal co-ordinate system. This handedness mismatch of-

ten leads to annoying sign errors in quaternion-based algorithms.

Using quaternions, a particular rotation is represented via the unit quater-

nion q given by

q = q+qi+qj+qk

where q+q+q+q = . It is known[61] that quaternions are particularly

useful not only for representing rotations but also for interpolating them.

This interpolation is performed by considering the unit quaternion to be a

point on a four-dimensional hyper-sphere and interpolating over the surface

- 13 -

An Overview of Geometric Algebra

of this sphere. For example, given a pair of rotations specified by the unit

quaternions q and q, the spherical linear interpolation (SLERP) would be

q =

 q(q−
 q)λ if q ·q ≥ 

q(q−
 (−q))λ otherwise

where λ varies in the range (,) [39].

Recall that the locus of exp(iθ) is the unit circle. It is straightforward to

show that, for some normalised bivector B, the locus of the action of exp(Bθ)

upon a point with respect to varying θ is also a circle in the plane of B. Hence,

if we consider some rotations R,R = exp(B)R, where B is some normalised

bivector, it is clear that the quaternionic interpolation is exactly given by

Rλ = (RR̃)
λR = exp(λB)R

where λ, the interpolation parameter, varies in the range (,). In fact this

method is not confined to three dimensions, like quaternionic interpolation,

but instead readily generalises to higher-dimensions. It is also worth noting

the extreme similarity between the rotor interpolation and the quaternionic

interpolation. In fact pure-rotation rotors behave identically to quaternions

and we shall see later how this SLERP interpolation scheme may be extended

to include translation as well as rotation.

2.1.4 The Conformal Model of Geometric Algebra

In the Conformal Model[29] we extend the space by adding two additional

basis vectors. The notation we use will follow the original notation given in

- 14 -

An Overview of Geometric Algebra

[29]. Let x be a vector in a space denoted A(p,q). The annotation (p,q) shall

be termed the signature of the space. A given signature (p,q) implies that we

may construct an orthogonal basis for the space, {ei}, i= , · · · ,n= p+q where

ei = + for i = , · · · , p and ei = − for i = p+ , · · · ,n; i.e. we take a general

mixed signature space.

To perform geometric operations using GA we now extend the space to

A(p+,q+) via the inclusion of two additional orthogonal basis vectors, e

and ē, such that

e =+, ē =−

Note that if x ∈ A(p,q), then e · x = ē · x =  since ei · e = ei · ē =  for i =

, · · · ,n. We now define vectors n and n̄ as

n = e+ ē n̄ = e− ē.

These vectors will be useful later. It is easy to see that n and n̄ are null vectors

since

n = (e+ ē) · (e+ ē) = e+e · ē+ ē

= +−= 

and

n̄ = (e− ē) · (e− ē) = e−e · ē+ ē

= −−= .

- 15 -

An Overview of Geometric Algebra

We also note two useful identities for n, n̄ and x ∈A(p,q):

n · n̄ = (e+ ē) · (e− ē) = e− ē = 

x ·n = x · n̄ = .

It is equally easy to show that if we define the bivector E = n∧ n̄ then

E = (n∧ n̄) · (n∧ n̄)

= (n · n̄)(n · n̄)−nn̄

=  (2.1)

since n · n̄ =  and n = n̄ = .

In the conformal model we use general null-vectors to represent points

and build up objects. In A(p,q) we map a point x ∈A(p,q) to a vector F(x) ∈

A(p + ,q + ). Using this representation we find that complex geometric

operations may be performed by simple algebraic manipulation of F(x). The

specific mapping used is the Hestenes ([29], page 302) representation

F(x) = −



(x− e)n(x− e) (2.2)

where, substituting for n = e+ ē and using the fact that ē ·x = = ē ·e = n ·x, it

is possible to rewrite this equation in terms of the null vectors as follows

F(x) =



(xn+x− n̄) (2.3)

which is similar to the form which is used in the more recent ‘horosphere’

formulations of the conformal framework [28]. We will see that there is some

choice as to what factor we put in front of the xn+ x− n̄ expression; we

- 16 -

An Overview of Geometric Algebra

choose 
 so that our normalisation condition for null vectors, which allows

us to compute the reverse mapping F(x) 7→ x independent of the absolute

scale of F(x), becomes

F(x) ·n =−.

We will see that it will often be necessary to work with normalised lines,

planes, circles and spheres specified by such ‘unit’ representations in order

to apply the various formulæ which will be so important in later sections.

It is also worth noting that the mapping as it stands above is dimensionally

inconsistent. In following chapters we will show how compensating for this

inconsistency can allow one to extend the approach to various non-Euclidean

geometries.

It is possible to show that F(x) is always a null vector for any x by directly

evaluating [F(x)]

[F(x)] =



(xn+x− n̄) · (xn+x− n̄)

= −



xn · n̄+ x

= −x+ x =  (2.4)

We have mapped vectors in A(p,q) into null vectors in A(p+,q+) and

this is precisely the horosphere construction. It also shows the need to im-

pose a normalisation constraint upon the resultant null vectors as they re-

main null irrespective of absolute scale. More generally we can show that

all null vectors in A(p+ ,q+ ) must be the result of mapping some vector

- 17 -

An Overview of Geometric Algebra

x ∈A(p,q) as above. Any vector X ∈A(p+,q+) can be written as

X = an+bx+ cn̄

where x = xiei, i = , · · · , p+q and hence x ∈A(p,q). We can say that X ·n = c

and X · n̄ = a (since n is null and x · n = ). Therefore a and c are uniquely

determined. However we can also write our general X as X = bxiei +αe+ ᾱē

for suitable scalars α and ᾱ and have X · e j = bx j (j = , · · · , p+q). So, whilst

the product bx j is uniquely defined by X , b and x j individually are not. Now

suppose that X is null so that X = 

X = (an+bx+ cn̄) · (an+bx+ cn̄)

= acn · n̄+bx

= bx+ac =  (2.5)

From this we are easily able to see that any null vector can be written in

the form

λ(xn+x− n̄) (2.6)

since if (an+bx+ cn̄) = λ(xn+x− n̄) we have that

c =−λ λx = a and λ = b

and we can then eliminate λ from these last two equations to give the condi-

tion bx =−ac. This is precisely the condition given in equation 2.5.

These results may now be used to provide a projective mapping between

A(p,q) and A(p+,q+). Specifically that the family of null vectors λ(xn+

x− n̄), in A(p+,q+) are taken to correspond to the single point x∈A(p,q).

- 18 -

An Overview of Geometric Algebra

If x is the origin then we see that F(x) = −
 n̄ and we may therefore associate

null vectors parallel to n̄ with the origin. We will see later that when we invert

n̄ we obtain n, suggesting that we associate null vectors parallel to n with the

point at infinity (the usual result of inverting the origin).

When we look at the inner product of normalised null vectors in A(p+

,q+) we discover something very interesting. If A and B in A(p+,q+)

represent the points a and b in A(p,q), then

A ·B = F(a) ·F(b)

=



(an+a− n̄) · (bn+b− n̄)

= −



a+a ·b− 


b

= −



(a−b) (2.7)

and we see that A ·B is related to the Euclidean distance between points a

and b. We can therefore define the Euclidean distance between two point

representations as

d(A,B) =
√

−(A ·B) (2.8)

This property of the conformal space and its relationship to distance geom-

etry [17] is discussed at more length in [28]. The mapping and properties

described here were outlined originally in [29].

Rotations

In usual descriptions of GA (without the use of the conformal model) ro-

tations are performed with elements of the algebra termed rotors. In this

- 19 -

An Overview of Geometric Algebra

section we aim to show that these rotors may be used unchanged on the null

vectors representing points. Let x 7→ RxR̃ with x ∈ A(p,q) and R be a rotor

in the Geometric Algebra over A(p,q). Consider what happens when R acts

upon F(x); i.e. the nature of RF(x)R̃

RF(x)R̃ =



R(xn+x− n̄)R̃ =




[xRnR̃+RxR̃−Rn̄R̃].

It is straightforward to show that this commutes with n and n̄ so

RF(x)R̃ =



(x̂n+x̂− n̄) (2.9)

where x̂ = RxR̃. We have therefore shown that rotors in A(p,q) remain rotors

in A(p+,q+) in that they retain their action about the point x represented

by F(x). To summarise

x 7→ RxR̃ ⇔ F(x) 7→ F(RxR̃) (2.10)

Translators

Translation along a vector a is defined for our purposes as the mapping x 7→
x+a for some x, a∈A(p,q). In this section we will show that this is performed

by applying a rotor R = Ta = exp
(na


)
to F(x).

Before proceeding with the proof we should note that in some non-Euclidean

geometries the addition operator, when viewed as a translation operator, is

non-commutative; translation of geodesic A along geodesic B is not the same,

in general, as translation of B along A. For the moment we shall ignore this

but it will become important again in later chapters on non-Euclidean ge-

ometries.

- 20 -

An Overview of Geometric Algebra

Returning to the form of the translation rotor, consider the usual power

series expansion of the exponential which we may immediately simplify to

R = Ta = exp
(na


)
= +

na

+




(na


)
+ · · ·= +

na


(2.11)

since n is null, an =−na and therefore the higher order terms are all zero. We

now see how R acts on the vectors n, n̄ and x.

RnR̃ =
(
+

na


)
n
(
+

an


)
= n+




nan+




nan+




nanan

= n (2.12)

again using an =−na and n = . Similarly we can show that

Rn̄R̃ = n̄−a−an (2.13)

RxR̃ = x+n(a · x) (2.14)

Immediately we see that our interpretation of n being the point at infinity and

n̄ being the origin is consistent with our claim that R represents the transla-

tion x 7→ x+a since R(−n̄)R̃ = F(a) and the point at infinity is unchanged by

finite translation.

We can now also see how the rotor acts on F(x)

RF(x)R̃ =
(
+

na


) 

(xn+x− n̄)

(
+

an


)
=




(xn+(x+n(a · x))−(n̄−a−an))

=



((x+a)n+(x+a)− n̄)

=



(x̂n+x̂− n̄) = F(x+a) (2.15)

- 21 -

An Overview of Geometric Algebra

where x̂ = x+a and thus translations in A(p,q) can be performed by the rotor

R = Ta defined above. To summarise

x 7→ x+a ⇔ F(x) 7→ TaF(x)T̃a = F(x+a) (2.16)

Inversion

In the usual three-dimensional geometric algebra we can reflect a vector a in

a plane with unit normal n by ‘sandwiching’ the vector between the normal

−nan [37]. Sandwiching the object to be reflected between the object in which we

wish to reflect is a very general prescription in GA and one which will be used

heavily in later parts of this thesis. In this section we look at how inversions

are brought about by this same reflection operation.

By ‘inversion’ we mean the mapping x 7→ x
x or, equivalently, for non-

singular vectors, x 7→ x−. Firstly, we look at the reflection in e of various

vectors

−ene =−een̄ =−n̄

since ne = (e+ ē)e = (e+ ēe) = (e− eē) = en̄. Similarly, we can show that a

number of reflection properties hold

−ene = −n̄ (2.17)

−en̄e = −n (2.18)

−exe = x (2.19)

- 22 -

An Overview of Geometric Algebra

and finally we may observe what happens to F(x) under reflection in e

−eF(x)e = −e



(xn+x− n̄)e

=



[−xn̄+x+n]

= x




[
x

n+
x
x

− n̄
]

= xF
(x

x

)
(2.20)

We have, therefore, shown that the inversion operation in A(p,q) can be

performed via the reflection in e of the representation in A(p+,q+).

x 7→ x
x

⇔ F(x) 7→−
eF(x)e

x
= F

(x
x

)
(2.21)

Since the absolute scale of F(x) is irrelevant, as we always rescale to im-

pose our normalisation constraint, we can omit the scaling by x−. It is also

irrelevant, by the same logic, whether we take −e(·)e or e(·)e as the reflection

and henceforth we will use e(·)e for convenience. This sandwiching opera-

tion will be a common one in the algorithms we will describe in subsequent

chapters.

Dilators

A dilation by a factor of α is represented by the mapping x 7→ αx. In this

section we investigate how to form a rotor which has the action of dilating

about the origin. We start by considering the rotor R = Dα = exp
(

α

 eē
)

and a

number of relations which can easily be verified

−eēn = n = neē

−n̄eē = n̄ = eēn̄ (2.22)

- 23 -

An Overview of Geometric Algebra

We can now look at what RF(x)R̃ gives

DαF(x)D̃α = exp
(

α


eē
) 

{xn+x− n̄}exp

(
−

α


eē
)

=



(x exp(αeē)n+x−exp(αeē) n̄)

=



(x exp(−α)n+x−exp(α) n̄)

= exp(α)



{exp(−α)xn+exp(−α)x− n̄}

= exp(α)



{x̂n+x̂− n̄} (2.23)

where x̂= exp(−α)x. The above steps can be verified by considering exp
(
−α

 eē
)

as the expansion − α

 eē + 
!

(
α

 eē
)

+ · · · and using the relations given in

equation 2.22. Again noting that the absolute scale of F(x) is unimportant

we have therefore shown that dilations by a factor of exp(−α) can be per-

formed by the rotor R = Dα

x 7→ exp(−α)x ⇔ F(x) 7→ DαF(x)D̃α = exp(α)F(exp(−α)x) (2.24)

Note that the signs are incorrect in the equivalent equations in [29], p.303,

equation 3.22. It is worth noting that dilation about any other point may be

achieved by concatenating the appropriate rotors to move that point to the

origin, dilate and move back.

Special conformal transforms

We have seen above that we are able to express rotations, inversions, trans-

lations and dilations in A(p,q) by rotations and reflections in A(p+,q+).

This now leads us to consider special conformal transformations. These are es-

- 24 -

An Overview of Geometric Algebra

sentially transformations which preserve angles and are defined by the mo-

tion

x 7→ x


+ax
(2.25)

Some thought reveals this transform to be a combination of inversion,

translation and inversion again

x 7−→
inversion

x
x

7−→
translation

x
x

+a≡ x
x
(+ xa)

7−→
inversion

x
x +a

(x
x +a)(x

x +a)

=
x+ax

+a · x+ax
= x



+ax
(2.26)

since 
+ax = +xa

(+ax)(+xa) . The final line in the above expression shows us

that x 
+ax is indeed a vector since x+ax is a vector. As we have built up the

special conformal transformation via inversions and translations, we know

exactly how to construct the A(p+ ,q+ ) operator that performs such a

transformation by simply chaining the rotors for inversion and translation

we derived above. The required rotor is therefore given by

Ka = eTae, so that x 7→ KaxK̃a (2.27)

and

KaxK̃a = e
{

Ta(exe)T̃a
}

e (2.28)

Substituting for the rotors above we can write our special conformal rotor as

Ka = −



n̄a (2.29)

- 25 -

An Overview of Geometric Algebra

We are now in a position to see what happens when we act on F(x) with Ka

KaF(x)K̃a = eTa(eF(x)e)T̃ae

= eTa(−xF(
x
x
))T̃ae

= −xe
{

F(
x
x

+a)
}

e

= −x
{
−
(x

x
+a
)

F

((x
x +a

)(x
x +a

)
)}

= (+a · x+ax)F
(

x


+ax

)
(2.30)

The end result is therefore

x 7→ x


+ax
⇔ F(x) 7→ (+a · x+ax)F

(
x



+ax

)
(2.31)

2.1.5 Observations

We can see that, from the above, the following results are true:

RnR̃ = n for R a rotation, since nR̃ = R̃n

RnR̃ = n for R a translation (equation 2.12)

nR̃ = R̃n and RnR̃ = exp(−α)n for dilations

Thus rotations, translations and dilations leave n, which we identify with

the point at infinity, unchanged up to a scale factor. This is a fact which will

be important to us in subsequent chapters. Indeed, we find that the underly-

ing geometry described by the rotors is related to the element of the algebra

which the rotors hold invariant. We will see later that the five-dimensional

conformal setup provides a framework in which we can simply describe non-

Euclidean geometries in such terms.

- 26 -

An Overview of Geometric Algebra

2.2 Existing implementations

As part of the research presented here a library designed to help with the im-

plementation of CGA-based algorithms in an efficient manner was created.

Before work started on designing the software, several existing systems were

investigated. All of the following packages were designed to provide high-

level access to numerical computations using GA.

2.2.1 CLUCalc & CLUDraw

CLU & CLUDraw were written by Christian Perwass and may be obtained

from his web-site[50]. Of all the systems, this is the only one designed both

for CGA and the visualisation of spheres, circles, etc. directly from the CGA

model.

It is written in C++ and uses the object-oriented features of the language

extensively. Multivectors are represented as objects and operations upon

them are performed by overloading the standard operators of the C++ lan-

guage.

CLU is a library designed for numerical computations and is not limited

to the signature used for the conformal model but also has support for other

signatures. CLUDraw is a library designed to take multivectors calculated

by CLU and to provide a convenient way to visualise them as spheres, lines,

planes, etc.

Although it provides a convenient interface, the heavy use of C++ object-

orientation and operator overloading within the library results in a rather

- 27 -

An Overview of Geometric Algebra

high computational overhead. The decoupling of the calculation engine and

visualisation engine, however, provides the useful ability to isolate the graph-

ics code in a clean manner.

2.2.2 Gaigen

The Gaigen homepage[22] describes it thus

Gaigen is a program which can generate implementations of ge-

ometric algebras. It generates C++, C and assembly source code

which implements a geometric algebra requested by the user. Peo-

ple who are new to geometric algebra may think that there is only

one geometric algebra. However, there are many different geo-

metric algebras. The properties that make these algebras different

are, among others, their dimensionality and the signature of their

basis vectors. Each of these different algebras may be useful for

different applications.

The user can select the signature of the space and generate C-code to im-

plement it. The code it generates is efficient and compact. The Gaigen2

project has moved into a different direction – instead of accelerating indi-

vidual products, a different approach to making an efficient implementation

is used with a different internal representation. Gaigen does not possess a

visualisation engine by default.

Gaigen, although fine for general purpose use, was not suitable for this

PhD as, ultimately, it was desired that a similar API would be useful for both

- 28 -

An Overview of Geometric Algebra

Geometric Product Multiplication Table

1 e e e e e e e

1 +1 +e +e +e +e +e +e +e

e +e +1 +e +e +e +e +e +e

e +e -e +1 +e -e -e +e -e

e +e -e -e +1 +e -e -e +e

e +e -e +e +e -1 -e +e -e

e +e -e -e +e +e -1 -e +e

e +e +e -e +e -e +e -1 -e

e +e +e -e +e -e +e -e -1

Table 2.1: Example TEX output from Gaigen

software and hardware implementations. It was felt that having our own

implementation would lead to greater flexibility in this area.

Gaigen does have the useful ability to generate product tables for the al-

gebra (see table 2.1) in both plain text and TEX format.

2.2.3 Cambridge GA library for Maple

This library[10] provides Geometric Algebra capabilities for the Maple V and

VI symbolic mathematics packages. It provides no visualisation capabilities

above those provided by Maple. This is a very useful tool for research but is

aimed more at symbolic manipulation than numerical computation.

- 29 -

An Overview of Geometric Algebra

2.3 Existing uses

A number of existing applications of GA have been developed in the field of

graphics and vision[62, 23] and indeed much of contemporary physics has

been recast using GA methods[15], providing a conceptually simpler frame-

work for further research.

This thesis will build on such work and aims to advance, using Geometric

Algebra, a number of fields in Computer Graphics.

- 30 -

“A topologist is one who doesn’t know the
difference between a doughnut and a coffee
cup.”

— John Kelley

Objects in the Conformal
Representation

3

In this chapter we will look at the rôle played by bivectors in the confor-

mal model and give some useful alternative representations of lines, planes,

circles and spheres.

Throughout this chapter we shall say that a geometric primitive is repre-

sented by some element M of the algebra if, for all null-vector representations

X which satisfy

X ∧M = ,

the point represented by X lies on the object or primitive and the represen-

taion of all points on the object satisfy that relation. We term this an incidence

relation.

Much of this work relies on the approach introduced by Rosenhahn[54]

on representing objects via incidence relations. This chapter presents these

result in a form which will be used later on along with a set of proofs showing

the ease with which intrinsically geometric results can be shown with GA.

Objects in the Conformal Representation

3.1 A note on methodology

In this section we will develop a useful tool used by a number of proofs

below. Firstly recall that, in projective geometry, if a line, L, passes through

two points a,b, whose (4d) homogeneous representations are A,B1, we can

represent the line by the bivector L = A∧B. The representation, X , of any

point lying on the line will satisfy

X ∧L = .

In the conformal representation rotations, translations, dilations and in-

versions are all represented by rotors or reflections, which allows us to infer

that any incidence relations remain invariant in form under such operations.

This may also be seen explicitly – suppose we have the incidence relation

X ∧Y ∧ · · ·∧Z = 

where X ,Y, · · · ,Z ∈A(p+,q+). Under reflections in e we have

X ∧Y ∧ · · ·∧Z 7→ (eXe)∧ (eYe)∧ · · ·∧ (eZe)

= e(X ∧Y ∧ · · ·∧Z)e

since (eXe)∧(eYe)= 
(eXeeYe−eYeeXe)= 

e(XY −Y X)e= e(X∧Y)e, as e= .

Therefore it is true that if X ∧Y ∧ · · ·∧Z =  then (eXe)∧(eYe)∧ · · ·∧(eZe) = .

Similarly, if we consider the relation under some rotor R we have

X ∧Y ∧ · · ·∧Z 7→ (RXR̃)∧ (RY R̃)∧ · · ·∧ (RZR̃)

= R(X ∧Y ∧ · · ·∧Z)R̃
1i.e. we add a further orthogonal basis vector e so that A = a+ e.

- 32 -

Objects in the Conformal Representation

again using (RXR̃)∧(RY R̃) = 
(RXR̃RY R̃−RY R̃RXR̃) = 

R(XY −Y X)R̃= R(X ∧

Y)R̃, as RR̃ = . Once more we can say that if X ∧Y ∧ · · ·∧Z =  then it is also

true that (RXR̃)∧ (RY R̃)∧ · · ·∧ (RZR̃) = .

Translations, rotations, dilations and inversions can now be brought into

the context of projective geometry, giving a significant increase in the useful-

ness of the representation. It is now possible to build up a set of useful results

in this conformal system and to see how lines, planes, circles and spheres are

represented. The working above will be the basis for most proofs of con-

structions in this chapter. We prove the construction holds for some simple

case at the origin and then we can say it must hold for all cases since we

can rotate, translate and dilate our setup at the origin to any configuration in

space, with no change in the incidence relations.

3.2 The equation of a line

As was discussed above, the incidence relations are invariant under rotations

and translations in the A(p,q) space. Hence without loss of generality we can

consider the incidence relation for a line in the direction e passing through

the origin.

Let three points on this line be x,x,x with corresponding A(p+,q+)

representations X,X,X. It is clear that {Xi} contains only the vectors n, n̄ and

e as any point x on the line must have the form x = λe. We therefore claim

that, if X is the representation of any other point on the line, we can write the

- 33 -

Objects in the Conformal Representation

incidence relation

X ∧X∧X∧X = 

We prove this as follows. Let L = X∧X∧X, if we expand this out in

terms of the conformal representation we have

L =



(xn+x− n̄)∧ (xn+x− n̄)∧ (xn+x− n̄)

= α(n∧ e∧ n̄) (3.1)

where α is a scalar which depends upon x,x,x. If X = 
(x

n+ λe− n̄),

then it is easy to see by direct substitution that X ∧L = . Since we can rotate

and translate our simple line through the origin to any other line in space

and still preserve the incidence relations, we know that we may represent all

lines in this manner. It is interesting to note that this parallels the projective

case and also that we would appear to require 3 points in this conformal

representation to describe a line instead of the usual 2. We shall return to this

later.

3.3 The equation of a plane

This section uses a similar method to develop the representation of a plane.

Again by translational and rotational invariance we can, without loss of gen-

erality, consider initially only the plane spanned by e and e and passing

through the origin. If the point x lies in this plane then we can write

x = λe+µe

- 34 -

Objects in the Conformal Representation

and its conformal representation X will only contain the vectors n, n̄,e,e

X =



(xn+(λe+µe)− n̄)

Let Φ = X∧X∧X∧X, where the points represented by {Xi} all lie in the

plane. By expanding we can show that Φ must take the form

Φ = β(n∧ n̄∧ e∧ e)

and so, for any representation X of a point on the plane we have X ∧Φ = .

Therefore

X ∧X∧X∧X∧X =  (3.2)

is the incidence relation for a plane passing through points represented by

Xi, i = , ...,. Once again we note the apparent requirement for 4 points to

specify the plane as opposed to the usual 3.

We may easily extend this to higher dimensions and specify an r-d hy-

perplane (where a line is r = , a plane is r =  and so forth) via the relation

X ∧X∧X∧ . . .Xr+∧Xr+ =  (3.3)

where {Xi} are conformal representations of the r+  points {xi} lying on the

hyperplane.

3.4 The role of inversion: lines and circles

It may initially appear incongruous to specify r+  points in order to deter-

mine an r-d hyperplane. For example, 2 points clearly suffice to determine a

- 35 -

Objects in the Conformal Representation

line, 3 points for a plane and so on. This section discusses the rôle of these

extra points.

To understand the requirement for these extra points, and the part in-

version plays, we shall use a simple example. We shall consider the space

A(,), that is, the ordinary Euclidean plane with basis {e,e}, e = , e = .

Let the line L be x = , or equivalently, (,y) : −∞ ≤ y ≤ +∞ and let a be

the point (x,y). Suppose we wish to invert points on this line. Doing so gives

us the set of points

a 7→ a
a

=⇒ L 7→ (

+ y
,

y
+ y

)
(3.4)

Parameterising the original line as x = ,y = t ; −∞ ≤ t ≤ +∞, the inver-

sion produces (x ′,y ′) =
(


+t ,

t
+t

)
and it is then easy to show that[

x ′−




]
+ y ′ =

(


)
The inversion, therefore, produces a circle through the origin, centre ( ,)

radius 
 , see figure 3.1. We may therefore make the connection

straight line 7−→
inversion circle

We can now state that three points, x··· on this line with the representations

X··· must invert to give three points, X ′··· on this circle. Let the general point

on the line be represented by X ; we know, from the above incidence relations,

that

X ∧X∧X∧X = 

and thus, if X ′ is a general point on the circle, we know that

X ′∧X ′∧X ′∧X ′ = 

- 36 -

Objects in the Conformal Representation

(1, 0)

X2 (1, y2)

X1 (1, y1)
P1

P2

P3

L

O

X3 (1, y3)

Figure 3.1: An illustration of the inversion of points on the line x =  (L) in the unit circle

centred on the origin. It produces a circle centred on ( ,) and with radius 
 .

The points at infinity on the line L map to the origin.

We can see this by performing an inversion upon the line via a reflection in e

e(X ∧X∧X∧X)e = eXe∧ eXe∧ eXe∧ eXe

This gives a very useful form for the equation of a circle. We derived it for a

special case but since we know that we can dilate and translate as we wish, it

must in fact be true for a completely general circle. Thus if X··· are any three

points, the equation of the circle passing through these points is

X ∧C = X ∧X∧X∧X =  (3.5)

Where we identify the trivector C as the representation of the circle itself. C is

formed by wedging any three points on the circle together. We will see later

that all such trivectors are equivalent up to scale.

Treating this as a general incidence relation for a circle and by sandwich-

ing it between e it is clear that we will, in general, obtain another circle under

inversion since each X ′i = eXie will be another general point in the plane.

- 37 -

Objects in the Conformal Representation

This only fails if X ′,X
′
,X

′
 happen to be collinear and, further, co-linearity

will only occur if the original circle passes through the origin (as in the case

we started with here).

We can see this if we consider what happens to the representation of the

origin, n̄ under inversion. If we sandwich n̄ in between e we obtain en̄e = n

and hence we justify our association of n with the point at infinity (the usual

result of inverting the origin). Therefore the incidence relation for a line may

always be written in the form

X ∧n∧X∧X =  (3.6)

where X and X are the representations of any two finite points on the line.

This explains the extra point we appeared to need in describing a line earlier.

We can now see that

X ∧X∧X∧X = 

actually describes a circle and, therefore, genuinely requires 3 points whilst a

line is just a special case of a circle which passes through the point at infinity.

To summarise, any line, L, is represented by a trivector of the form

L = X∧X∧n (3.7)

and similarly a circle, C, is represented by a trivector of the form:

C = X∧X∧X (3.8)

where no Xi is a multiple of n. This close relationship between circles and

lines and the interpretation of a line as a circle passing through the point

- 38 -

Objects in the Conformal Representation

at infinity is not new. The whole field of inversive geometry [7] in the plane

has this as its basis. In the above example when we took a line to a circle

through the origin we were effectively inverting in the unit circle centred on

the origin, as illustrated in figure 3.1. The entire of inversive geometry in the

plane can be encapsulated by the operation of reflecting points (X) and lines

(L) in general circles (C), i.e.

X ′ = CXC

L ′ = CLC

The huge advantage that we have in our conformal framework is that pre-

cisely the same equations can be used in 3d. So much so that, considering

that 3d spheres are merely circles in 4d space, we can state that a sphere is

represented as

S = X∧X∧X∧X (3.9)

where X,X,X,X are the null-vector representations of points on its surface.

Conventionally, much of inversive geometry is described by complex num-

bers and so the jump from the plane to higher-dimension spaces is rarely

made.

3.5 Vectors and 2-blades

We have seen that we may use null vectors in our 5d space to represent points

in Euclidean 3-space. In particular we identify n and n̄ with the point at in-

finity and the origin respectively. In our 5d space there clearly exist vectors

- 39 -

Objects in the Conformal Representation

which do not square to zero. The interpretation of such vectors will be dis-

cussed later.

The term blade in GA is used to refer to quantities which can be written as

the wedge product of vectors. For example a r-blade can always be written

as A∧A∧ · · ·∧Ar. It is important to distinguish this from an r-vector which

may be any linear combination of r-blades. This is important since, in 5d,

not all bivectors can be written as 2-blades; for example ee+ee cannot be

written in the form A∧B with A and B being vectors.

We start by postulating that A∧B represents the pair of points with null-

vector representations A and B. This is clear when we consider the incidence

relation

X ∧A∧B = 

which is only true in general for X = A or X = B. If we accept that A∧ B

represents two points then we should develop an algorithm to extract the

individual null-vectors A and B.

3.5.1 Extracting A and B from A∧B

In this section we explain how to extract A and B from A∧B using a method

of projectors. Throughout we shall assume that A and B have been normalised

so that A ·n =−. We start by considering the 2-blade T = A∧B and form

F =


β
A∧B (3.10)

- 40 -

Objects in the Conformal Representation

where β >  and β = T , so that F =  if β 6= . We now use F to define two

projector operators

P =



(+F)

P̃ =



(−F) (3.11)

where P̃ denotes the normal reversion operation applied to P. Note that P =

P, which can be be verified

PP =



(+F)(+F)

=



(+F +) =




(+F) (3.12)

Similarly, we can show that P̃P̃ = P̃. These properties justify calling these

operators projectors, borrowing the term from physics. An equally important

property is that PP̃ = P̃P =  which, again, is easy to prove

PP̃ =



(+F)(−F) =




(−) =  (3.13)

and similarly for P̃P. We may now see what effect these projectors have on A

and B

PA =




[
+



β
A∧B

]
A

=




[
A+



β
(A∧B)A

]
=





[
A+



β
(A ·B)A

]
=




(A−A) =  (3.14)

since (A∧B)A = (A∧B) ·A =−AB+(A ·B)A = (A ·B)A (A = ) and A ·B =−β.

This follows from β = (A∧B) · (A∧B) = −AB+(A ·B) and the facts that

A = B =  and A ·B must be negative as seen in equation 2.8.

- 41 -

Objects in the Conformal Representation

Using similar working we can also show the results of P and P̃ acting on

A and B

PA =  (3.15)

PB = B (3.16)

P̃A = A (3.17)

P̃B =  (3.18)

The next step is to consider the vector obtained by dotting A∧B with n.

(A∧B) ·n =−n · (A∧B) = −(n ·A)B+(n ·B)A = (B−A) (3.19)

using the fact that A and B are normalised points such that A ·n = B ·n = −.

It therefore follows that we have

P[(A∧B) ·n] = P(B−A) = B (3.20)

−P̃[(A∧B) ·n] = −P̃(B−A) = A (3.21)

We note also that since AP = P̃A = A it follows that P̃AP = P̃P̃A = P̃A. Similar

relations hold for BP etc., so that we have

P̃AP = P̃A

PAP̃ = 

PBP̃ = PB

P̃BP = 

which means that we can also write the projections as two-sided operations.

- 42 -

Objects in the Conformal Representation

Thus from a 2-blade A∧B we can extract the two points A and B that it rep-

resents via

A = −P̃ [(A∧B) ·n]≡−P̃ [(A∧B) ·n]P

B = P [(A∧B) ·n]≡ P [(A∧B) ·n] P̃ (3.22)

We will see later that when we perform intersection operations that yield

two points the two points in question can then be found using the formulæ

in equation 3.22. Usefully we do not have to solve a quadratic equation as

we would do using conventional approaches.

3.6 Trivectors

We have already seen that there are two classes of object represented by

trivectors. If P,Q,R are null vectors in our 5d space representing points in

3d space then trivectors of the form

C = P∧Q∧R

represent circles. Recall that it is specifically a circle passing through points

represented by P,Q and R. Trivectors of the form

L = P∧Q∧n

represent lines, specifically that line passing through the points represented

by P and Q.

In GA it is often found that the operation of taking the dual, that is mul-

tiplication by the pseudoscalar, is useful and often has physical or geometric

- 43 -

Objects in the Conformal Representation

O e1

e2

−e1

Figure 3.2: Unit circle with three key points marked

significance. The dual of an element is always just another element of the

algebra and does not live in a separate ‘dual’ or ‘tangent’ space. Below we

shall consider the dual operation with respect to the representations of circles

and lines.

3.6.1 Circles as trivectors

Here we will show that taking the dual of the trivector representing a circle

gives rise to a useful alternative representation which naturally encodes both

the centre and radius. Let us first of all work in the plane so that our confor-

mal space is 4-dimensional, and is A(,), having basis vectors e,e,e and

ē.

We start with the unit circle in the plane and take as three points on it

those shown in figure 3.2. For any unit length vector, x̂, we know that F(x̂) =


(n+x̂− n̄) = (x̂+ ē). In particular we have

F(e)∧F(e)∧F(−e) = eeē

- 44 -

Objects in the Conformal Representation

and hence the trivector C = eeē represents the unit circle. In the plane the

pseudoscalar, which we shall write as I, is given by I = eeeē and so the

dual of C, which we write as C∗, can be shown to be given by

C∗ =CI = e = (n+ n̄) (3.23)

We know that X ∧C =  is the incidence relation for the circle and that X ∧C =

 can be rewritten as

X · (CI) =  ⇔ X ·C∗ = 

Note that C∗ is the dual of a trivector in a 4d space and is, therefore, a vector.

This suggests a very useful alternative representation for a circle, or a sphere

when generalised to higher dimensions.

We know from equation 2.8 that for any two normalised point represen-

tations A and B

A ·B =−



(a−b)

and thus, if X represents a point on a circle and B represents its centre, we

know that we can write

X ·B =−



(x−b) ≡−




ρ


where ρ is the radius of the circle. For a normalised point representation X

this implies that

X · (B−



ρ
n) = 

since X · n = −. Comparing this with X ·C∗ we see that provided we nor-

malise C∗ after taking the dual (so that C∗ ·n =−), then we find

C∗ = B−



ρ
n (3.24)

- 45 -

Objects in the Conformal Representation

The vector C∗, therefore, encodes in a neat fashion the centre and radius of

the circle in the plane.

Also note that if we take our (n+ n̄) as the representation of the dual of

the unit circle centred on the origin and rotate, translate and dilate the ex-

pression, we get precisely the same result as in equation 3.24. We can see this

by first taking our unit circle at the origin, C∗o = n+ n̄ and rotating it. We have

seen that rotation rotors leave n and n̄ invariant, so C∗o remains unchanged.

Now dilate this with a dilation rotor Dα = e
α

 eē where ρ = e−α is the dilation

factor. We have seen previously that DαnD̃α = e−αn and Dαn̄D̃α = eαn̄, so that

C∗o →W = e−αn+ eαn̄ (3.25)

Now, translate by a using a translation rotor, Tα = + na
 . Again, using previ-

ous results, we know that n is left invariant and −
 n̄ is taken to F(a), giving

us

W → Z = e−αn−eαF(a) (3.26)

Normalising this to give us our new C∗, where C∗ ·n =−, means dividing Z

above by −eα (since A = F(a) satisfies A ·n =−) leaving us with

C∗ =−



e−αn+A (3.27)

and we can now see that this is precisely equation 3.24 with A representing

the centre and ρ = e−α as the radius.

So far we have talked about circles in the plane. We shall now look at the

treatment of circles at general positions and orientations in space. Firstly we

- 46 -

Objects in the Conformal Representation

note that since we can think of C as the wedge product of the representations

of three points on the circle, it follows that the plane which the circle lies in is

C∧n.

In deriving equation 3.24 for the circle in the plane we used the pseu-

doscalar for the 4d space. It therefore seems plausible that when we move to

general circles in 3d the rôle of this pseudoscalar will be taken by the plane

in which the circle lies.

We firstly define the unit plane Ic by

Ic =
n∧C√

(−[n∧C])
(3.28)

since (n∧C) always squares to give a negative scalar. In future we will find

that it is convenient to always take the line, plane, circle, sphere etc. of unit

magnitude. The dual of the circle C is then given by the analogous equation

to equation 3.24 where we assume that given C, which can be ‘unit’, we form

C∗ and then normalise such that C∗ ·n =−. That is

C∗ ≡CIc = B−



ρ
n (3.29)

where B is again the centre of the circle, ρ is the radius. Note that the ‘dual’ in

this case is with respect the ‘unit’ plane in which the circle lies. The proof of

this is in most respects identical to the previous proof for the plane but where

before we used I, we now use the unit plane. This plane is proportional to

e∧ e∧ n̄∧ n, and is indeed identical to I. We can then rotate, dilate and

translate as before and note that R(CoIc)R̃ = RCoR̃RIcR̃ – and hence our new

dual – has the form given in equation 3.29. The dual is formed by taking

- 47 -

Objects in the Conformal Representation

the product of the transformed circle with the transformed plane it lies in.

We also note that we can find the radius of this general circle very simply by

squaring C∗

(C∗) = (B−



ρ
n)

= −ρ
B ·n = ρ

 (3.30)

using the facts that B = , n =  and B ·n =−. From this it then follows that

B = C∗+ 
(C

∗)n. To summarise, from the vector form of any general circle,

we can easily obtain the centre and radius as follows

(C∗) = ρ
 (3.31)

B = C∗
[
+




C∗n

]
(3.32)

Note here that the above relations assume C∗ is normalised such that C∗ ·n =

− since C∗ ·n = B ·n =−, as we assume B is a normalised null vector.

While the above formulation is indeed useful, we will now see that there

is a far more elegant way of finding the centre of a circle in 3d. The centre

of a circle, C, is also given by simply reflecting the point at infinity, n, in the

circle, i.e.

CnC (3.33)

To prove that CnC gives the centre we can return to our circle with its

centre at the origin and a unit radius. We saw earlier in this section that we

can write this circle as C = eeē and, again, we can define a unit circle, Ĉ, as

- 48 -

Objects in the Conformal Representation

Ĉ = eeē. Thus we see that

ĈnĈ = eeēneeē

= −eēneē

= −ēnē

= ē(e+ ē)ē = e− ē

= n̄ (3.34)

which is indeed the origin and therefore the centre of the circle. Having

proved that the result holds for this simple case, we can now rotate, dilate

and translate our circle to give any other circle and the result will still hold.

Suppose we apply a rotor, R, which is a composition of rotors which rotate,

dilate and translate, to take our circle, C, to any other general circle, C ′=RCR̃.

Then we see that

C ′nC ′ ∝ RCR̃(RnR̃)RCR̃ ∝ R(CnC)R̃ (3.35)

since we have seen previously that RnR̃ ∝ n for R composed of rotations,

translations and dilations. Equation 3.35 thus tells us that the rotated origin,

R(CnC)R̃, is indeed given by C ′nC ′. This type of simple proof, i.e. proving a

result for some simple case at the origin and generalising via rotations, trans-

lations and dilations, is a nice feature of the conformal framework. There will

be many other examples of the XaX formulation producing something inter-

esting in subsequent sections.

In many physical systems we find that GA is very useful in that it exposes

how observables usually arise by sandwiching some value between a multi-

- 49 -

Objects in the Conformal Representation

vector and its inverse or reverse. For example, in quantum mechanics, we

get the spin current in 3d from a Pauli spinor, φ, via s = φeφ̃. We see then

that this example of sandwiching n between a circle and its reverse (the re-

verse of a circle is itself up to a scale factor) is an example of this principle at

work in the conformal setting.

3.6.2 Lines as trivectors

Next we consider the circles passing through the point at infinity, which we

have already seen are lines. Again we begin by asking ourselves what the

dual of a line, L, actually encodes. We suspect the answer to this question will

provide relevant information about the line. As with circles, let us begin by

considering lines in the plane. As a starting point we take the line L parallel

to the x-axis and distance d from the x-axis. This line is given by wedging

together any two points on the line, say A = F(de), B = F(e+de), and n;

L = F(de)∧F(e+de)∧n

=



(dn+de− n̄)∧

(√
(+d)n+(e+de)− n̄

)
∧n

= −



e∧n∧ n̄−de∧ e∧n (3.36)

If we then take the dual of L, again with respect to the pseudoscalar, I, for

our 2d conformal space, we see that

L∗ = LI =−(



eE +deen)eeeē

= e+dn = eI+dn (3.37)

- 50 -

Objects in the Conformal Representation

using the identities, eE = Ee, eE = Ee, neē = n and Eeē = −. Thus, we

see that the dual of the line in the plane gives the dual, with respect to the

pseudoscalar in Euclidean space, I = ee, of the Euclidean unit vector in the

direction of the line plus dn where d is the perpendicular distance of the line

from the origin. This holds for any d, and if we apply rotors to rotate our line

(noting again that RnR = n) we see that we can extend our proof to any line

in the plane, therefore giving

L∗ = m̂I+dn (3.38)

where m̂ is the unit vector in the direction of the line and d is the perpendic-

ular distance of the line from the origin.

Recalling that n · n̄ = , we can extract d easily from L∗ as follows

d =



L∗ · n̄ (3.39)

Similarly we can then extract m̂ as

m̂ =−[L∗−



(L∗ · n̄)n]I (3.40)

As with circles, it should be straightforward to extend this work on lines

from the plane into space. However, unlike the circle case, we do not have an

obviously specified plane with which to define a 4d pseudoscalar, so instead

we look at the dual of the line with respect to the pseudoscalar for the whole

5d space. Clearly we multiply a 3-vector with a 5-vector and get a 2-vector.

Once again, consider the same line that we considered above. We look at the

- 51 -

Objects in the Conformal Representation

dual of this line with I ≡ I

L∗ = −(



e∧n∧ n̄)I −d(een)I

= ee−d(e∧ e)In

= eI+[((de)∧ e))I]n (3.41)

since In = nI. Clearly the first term gives us the unit vector in the direction of

the line and the second term gives us its moment. As this holds for any d, if

we rotate our line we can produce any line in space and we see that the above

can therefore be generalised to hold for any such line. More specifically we

write the dual of the line L as

L∗ = m̂I+[(a∧ m̂)I]n

where m̂ denotes the unit vector (in 3d) in the direction of the line and a is

any 3d point on the line. This is analogous to writing the line in terms of

Plücker coordinates, where 3 of the coordinates give the line’s direction and

the other 3 give its moment about the origin.

3.7 4-Vectors

We have already seen that 4-vectors in the conformal setting can represent

both spheres and planes. Having seen how we interpret the duals for cir-

cles and lines, it will now be easy to extend these arguments to spheres and

planes.

- 52 -

Objects in the Conformal Representation

3.7.1 Spheres as 4-vectors

Given any 4 points whose 5d representations are P,Q,R,S, the sphere through

those points is given by the 4-vector Σ

Σ = P∧Q∧R∧S

We know that X ∧Σ =  for any X lying on the sphere. This can be rewritten

as

X · (ΣI) =  =⇒ X ·Σ∗ = 

where Σ∗ = ΣI is the dual to Σ and, hence, is a vector. We can now follow

precisely the same workings given for the circle to show that the dual repre-

sentation of the sphere naturally encodes the centre and the radius.

If X is a point on a sphere and C is its centre we know that we can write

X ·C =−



(x− c) ≡−




ρ


where ρ is the radius of the sphere. For a normalised point X (X ·n =−) this

therefore implies that

X · (C−



ρ
n) = 

Comparing this with X ·Σ∗ we see that provided we normalise Σ∗ after taking

the dual (such that Σ∗ ·n =−), then we will find

Σ
∗ =C−




ρ
n (3.42)

As before, the dual vector Σ∗ encodes the centre and radius of the sphere. One

may use Σ or Σ∗ depending on whether it is most useful to specify the sphere

- 53 -

Objects in the Conformal Representation

by 4 points lying on it or by its centre and radius. Given a Σ∗ (via taking the

normalised form of the dual of Σ = P∧Q∧R∧S) we can immediately get the

radius and centre in the manner outlined earlier for the circle

(Σ∗) = ρ
 (3.43)

C = Σ
∗
[
+




Σ
∗n
]

(3.44)

As we saw with the case of circles, there is also a more elegant means of

extracting the centre of a sphere given Σ or S = Σ∗. The method is to reflect

the point at infinity, n, in the sphere so that the centre, C, is given by

C = SnS = ΣnΣ (3.45)

To show this we consider the sphere of radius 1 centred on the origin, Σo =

F(e)∧F(e)∧F(e)∧F(−e). We can expand this to give eeeē, so that

the dual, S, is given by the particularly concise expression e; we therefore

take the ‘unit’ sphere to be e. We then see that

SnS = ene = n̄ (3.46)

which is indeed the origin, the centre of the sphere in this case. Now if we

rotate, dilate, and translate our sphere at the origin to any other sphere in

space, say S ′, then, reflecting n in our new sphere gives

S ′nS ′ = (RSR̃)n(RSR̃) = (RSR̃)RnR̃(RSR̃)

= R[SnS]R̃. (3.47)

Since R[SnS]R̃ is the transformed origin, i.e. the new centre of the sphere, we

see that the formula S ′nS ′ does indeed give the centre.

- 54 -

Objects in the Conformal Representation

3.7.2 Planes as 4-vectors

A plane, Φ, passing through the 3 points whose 5d representations are P,Q,R,

is given by

Φ = P∧Q∧R∧n

The physical quantities that we might want to extract from such a 4-vector

are clearly the normal to the plane and the perpendicular distance of the

plane from the origin. We now investigate how the dual form of the plane

helps us to do this. Once again we start by considering the plane z = d which

is parallel to the x-y plane and distance d from it. We can represent Φ by

Φ = F(de)∧F(e+de)∧F(e+de)∧n

=



{(de− n̄)∧ ([e+de]− n̄)∧ ([e+de]− n̄)∧n}

= de∧ e∧ e∧n−



e∧ e∧ n̄∧n

= de∧ e∧ e∧n− e∧ e∧ e∧ ē (3.48)

where the second line in equation 3.48 follows because wedging with n re-

moves any term containing n. Then it is simple to show that the dual of Φ is

given by

Φ
∗ = ΦI = dn+ e (3.49)

This holds for any d. If we rotate this plane via a rotor we know that the

proof must hold, therefore since RnR̃ = n and ReR̃ = n̂, where n̂ is the new

rotated normal to the plane, the general equation for the dual of the plane is

given by

Φ
∗ = dn+ n̂ (3.50)

- 55 -

Objects in the Conformal Representation

Note that the above assumes that we have normalised the dual such that

[Φ∗] = ; we can ensure this by normalising the plane such that Φ = .

Therefore, given 3 points on the plane, P,Q,R, we form the normalised plane

Φ and its dual Φ∗, and we can then extract n̂ and d as follows

d =



Φ
∗ · n̄ (3.51)

n̂ = Φ
∗−




(Φ∗ · n̄)n (3.52)

Whether we use the 4-vector form or the normal-distance form of the plane

will depend upon the problem we are solving.

3.8 Intersections

In this section we outline the various ways of intersecting objects within the

conformal model. In general we shall use an operator termed the meet[29],

represended by the symbol ∨, which given two objects A and B gives their

intersection.

3.8.1 Intersecting spheres with spheres or planes

Let us consider the intersection of two spheres Σ and Σ where they may in-

tersect in a circle, at a point or not at all. Suppose we take the formula for the

meet[34] (where now we use ∗ to indicate multiplication by the pseudoscalar

In):

C = Σ∨Σ =
[
〈ΣΣ〉n−r−s

]∗ (3.53)

- 56 -

Objects in the Conformal Representation

n− r− s = −− = , so that the dual quantity will have grade − = 

— generally, this will give the trivector representing the circle of intersection.

We can tell whether we have a circle, a point intersection or no intersection

according to whether

C >  C =  or C <  (3.54)

In the case of C >  we can extract the centre and radius according to sec-

tion 3.7.1. If we also attempt to extract the centre and radius via these same

formulæ from C where C = , we will find that the circle will have zero

radius and its centre will be the point of tangency of the two spheres. Simi-

larly, attempting to extract the radius and centre from C in the case C < (i.e.

no intersection) leads to an imaginary radius and a centre which lies on the

shortest line joining the surfaces of the spheres (i.e. that joining the centres).

If the two spheres have the same radii, it is the midway point on this line.

The above all follows through if instead of having a second sphere, Σ,

we have a plane, Φ – we again get a trivector for our intersection object via

the meet and the sign of the square of this trivector tells us whether the two

objects are tangent, intersect in a circle or do not intersect at all.

3.8.2 Intersecting spheres with circles or lines

Let us now intersect a sphere Σ (4-blade) with a circle C (3-blade). Accord-

ing to our meet formulæ our

intersection is a 2-blade, B, given by

B = Σ∨C =
[
〈ΣC〉n−r−s

]∗ (3.55)

- 57 -

Objects in the Conformal Representation

where n− r− s = −−= , so that the dual object has grade 2. We have

already seen that these 2-blades represent 2 points — precisely as we would

expect, since an intersecting sphere and circle will do so at 2 points. Now we

again look at the sign of the resulting 2-blade, B, and we will find that there

are zero, one or two points of intersection when

B =  B <  or B > .

respectively. We have seen earlier that given a bivector B, such that B >

, of the above form, we can extract the two points of intersection via the

projectors given in equations 3.22. If B =  we cannot form the projector, but

it is trivial to find the representation of the point of contact, X , in this case

using the following

X = BnB

i.e. for a 2-blade of the form W = P∧Q, reflecting n in W , WnW , would give

us the midpoint of the line joining P and Q — for our case where B = ,

the construction BnB will therefore give us a representation of the point of

intersection. These results can easily be shown by considering simple cases

at the origin and then extending the proof via rotors as previously.

Precisely the same working holds if we replace our circles above with

lines — the meet again gives a 2-vector whose square tells us whether there

are 2, 1 or no intersections, and from which the intersection points can be

obtained easily. We will return to the intersections of lines with spheres when

we later consider reflections of lines in spheres.

- 58 -

Objects in the Conformal Representation

3.8.3 Intersecting planes with planes, circles and lines

Consider two planes Φ and Φ; taking the meet gives

L = Φ∨Φ =
[
〈ΦΦ〉n−r−s

]∗ (3.56)

where n− r− s = −− = , so that the dual object has grade 3 — as we

would expect, if the planes intersect to give a line. We are able to tell whether

the planes intersect by looking at the sign of L — if L =  we know that the

planes are parallel and do not intersect, if L > , the planes intersect in the

line L.

Now consider a plane Φ and a circle C; we take the meet of these two

objects to give

B = Φ∨C =
[
〈ΦC〉n−r−s

]∗ (3.57)

where n− r − s = − −  = , so that the dual object has grade 2 — the

plane and the circle intersect at a maximum of two points, and the 2-blade,

B, encodes these two points as with the sphere-circle intersection. Once again

we can assert that there are 2, 1 or 0 intersections according to whether B >

,B = ,B <. In the case of two intersections, the points are extracted from

B by projectors as before; in the case of tangency, the one point of contact is

obtained by taking BnB.

It is worth thinking about what happens when the circle C lies in the

plane Φ so that the intersection is C itself. As one might expect, in this

case there is no grade 3 part of ΦC. In the case of the z =  plane and the

unit circle lying in the plane and centred on the origin this can easily be

- 59 -

Objects in the Conformal Representation

confirmed:

Φ = F(e)∧F(e)∧F(−e)∧n ∝ eeeē

C = F(e)∧F(e)∧F(−e) ∝ eeē

thus

ΦC ∝ eeeēeeē = e hence 〈ΦC〉 = 

We can also note that, in this case, the dual of ΦC with respect to eeeē

is indeed C.

If we now replace our circle by a line, L, it is clear that the meet will still

give us a 2-blade, B however we know that the line and the plane intersect

in at most one location, so should we not be looking for a vector rather than

a 2-blade? The answer is that if the plane and the line intersect, and the meet

gives us B, then B is always of the form

B = X ∧n

where X is the representation of the point of intersection. This can be proved

easily by again considering a simple case at the origin. If B >  the line and

plane intersect in a point, if B =  the line and plane do not intersect and if

B =  the line lies in the plane. If there is one point of intersection so that B is

of the above form, we can extract the three-dimensional point of intersection,

x = xiei, i = ,, (and hence X), by simply equating xi to the coefficient of the

ei ∧n term or by using the following expansion

x = (B∧ n̄) ·E (3.58)

- 60 -

Objects in the Conformal Representation

where E = n∧ n̄ as given earlier.

3.8.4 Intersecting circles with circles and lines

Consider two circles, C and C; taking their meet gives

X =C∨C =
[
〈CC〉n−r−s

]∗ (3.59)

where n−r−s = −−= , so that the dual object has grade 1. We know,

however, that the intersection of two circles is at most 2 points (only possible

if they lie in the same plane), so how do we get two points from our grade 1

object? In fact we find that the following is true

C∨C = X where X =  if circles have one intersection

C∨C = X where X 6=  if circles have no intersection

C∨C =  if circles have two intersections. (3.60)

In the case where the meet gives zero and we know there are two intersec-

tions, these can easily be found by intersecting the plane of one of the circles

with the other circle, i.e.

B =C∨ (C∧n) =
[
〈C(C∧n)〉n−r−s

]∗ (3.61)

where n− r− s = −−= , so that the dual object has grade 2. The two

points of intersection can be extracted from the 2-blade B using equation 3.22.

If we now replace C by a line L we see that we again get a grade 1 object

- 61 -

Objects in the Conformal Representation

when we take the meet, and the situation above is exactly replicated, i.e.

C∨L = X where X =  if circle and line have one intersection

C∨L = X where X 6=  if circle and line have no intersection

C∨L =  if circle and line have two intersections (3.62)

As before, in the case where the meet gives zero the two intersections can

easily be found by intersecting the plane of one of the circles with the line. It

is also interesting to note here that in the case where the circle and the line

do not intersect, with the meet giving a vector, X , which is not null, the sign

of X tells us whether the line passes through the circle (X < ) or does not

pass through the circle (X > ) – such simple checks can often be useful in

graphics applications.

Given that we have had a little difficulty with circles intersecting circles,

we might expect some slight difficulties with lines and lines. It turns out that

many interesting constructions emerge when we start to consider the inter-

sections between two lines; these will be discussed in the following section.

3.8.5 Intersecting lines with lines

Let us consider two lines, L and L. Taking the meet of these two lines gives

X = L∨L =
[
〈LL〉n−r−s

]∗ (3.63)

where n − r − s = − −  = , so that the dual object has grade 1. We

might expect that if the lines intersect at a point, the meet, X , will give this

- 62 -

Objects in the Conformal Representation

intersection point – however, this is not the case. We find that the following

is true

L∨L =  if the lines intersect

L∨L ∝ n if the lines do not intersect (3.64)

We therefore have a simple of way for checking for intersecting lines, but if

the meet gives us zero so that we know there is one intersection point, we

can no longer find this point in a fully covariant way by intersecting one line

with the a plane defined by the other line, since such a plane is not uniquely

defined. We could, in practise, intersect one line with the plane formed by

the other line and the origin, but then if the other line passes through the ori-

gin, this will not work, leaving us a non-covariant procedure and one which

entails us forming conditionals for a number of cases. We would instead like

to look for a method which works covariantly – such a method exists, and in

the process of describing it, we see a number of other useful constructions.

Take our arbitrary lines, L and L (assume they are normalised, such that

L
 = L

 = ). Suppose we reflect line L in line L — this statement is not

well-defined in a conventional sense, but in GA we have seen that reflection

of an object in another object is indeed well defined and is brought about

by sandwiching the object to be reflected between the object that it is being

reflected in. So our reflected line L ′ is given by

L ′ = LLL

as shown in figure 3.3. The operation of reflection is grade preserving if we

- 63 -

Objects in the Conformal Representation

L1

L′′
1

L2

L′
1

X ′′′

X ′′

X

X ′

P

Figure 3.3: The rotation of intersecting lines to produce two lines intersecting at right angles,

via the construction L−LLL.

are dealing with blades, and therefore we know that that results in another

line. This construction will work for any two lines, but let us now suppose

that our lines intersect at a point; we can then expect that the reflected line

L ′ will be the line formed by the intersection point, represented by P, and

any point on L reflected in L. This is indeed what L ′ is. Now, however,

it becomes possible to form the line which is perpendicular to L, passing

through the intersection point, P, and in the plane defined by L and L via

the following

L ′′ = L−LLL (3.65)

Clearly what we are doing here is rotating one line in the plane defined by

the two lines to become perpendicular to the other line. We will return to

this rotor description later. Once we have two perpendicular lines which

intersect, we can find the point of intersection relatively easily. Take any

arbitrary point representation X and reflect it in L ′′ (assuming again that we

- 64 -

Objects in the Conformal Representation

have normalised L ′′) via X ′ = L ′′ XL ′′ , then take the midpoint of X and X ′. We

know that this must lie on the line L ′′

X ′ = L ′′ XL ′′ X ′′ =



(X +X ′)

It is straightforward to verify explicitly that X ′′ is the representation of the

true mid-point of the points represented by X and X ′ plus some multiple of

n. Now we reflect X ′′ in L to give X ′′′ and again take the midpoint — the

midpoint must now give us the intersection point P plus some multiple of n;

X ′′′ = LX ′′L P ′ =



(X ′′+X ′′′)

we then extract the null vector corresponding to the representation of our

intersection point P via

P =
−(P ′nP ′)
(P ′ ·n)

which has the effect of removing the multiple of n. This construction is in-

dependent of X and is a beautiful illustration of the ability to manipulate

objects using geometric algebra. Although it appears involved, it can be

implemented very easily (n̄ can be used as the point X) and is an entirely

covariant way of intersecting two lines. Of course, in practice, one can also

check to see if there is at least one line that does not pass through the origin

(n̄∧L =  if L passes through the origin); if there is one, for example L, we

can then form the plane n̄∧L and intersect this with L. If both lines pass

through the origin then the intersection point is the origin. Note that we can

use precisely the same type of argument to extract the plane formed by two

intersecting lines. For example, take any arbitrary point X , reflect it in the

- 65 -

Objects in the Conformal Representation

line L via LXL so that the midpoint of this line is given by P, where P is

given (up to some additional multiple of n) by

P =



(X +LXL)

P must clearly lie on L, thus the plane formed by the two lines must be given

by

L∧P = L∧



(X +LXL) (3.66)

Again, n̄ can be used for our point X in real computations. The derivations

given here are entirely covariant and the same constructions will intersect

‘lines’ in different geometries; we will illustrate this towards the end of the

thesis by considering three-dimensional hyperbolic geometry.

Recall that previously we found the reflection of L in L via LLL. Now

note that we can rewrite this as

LLL = (LL)L(̃LL) = RLR̃ (3.67)

since (̃LL) = L̃L̃ = LL. Thus we see that the quantity LL acts as a rotor

(if the lines are normalised) which rotates through twice the angle between

the lines about an axis through the intersection point and perpendicular to

the plane containing the lines. In fact, when we write this reflection as a

rotation, there is nothing to insist that our lines must intersect. If L and L do

not intersect, then LLL will still perform a reflection of L in L, but we are

now able to interpret exactly what this reflection means for non-intersecting

lines if we regard the operator as a rotor. It turns out that the rotor LL is

the product of a rotation rotor and a translation rotor – the rotation is in the

- 66 -

Objects in the Conformal Representation

plane normal to the common perpendicular of the lines and the translation

is along the common perpendicular, so that one line is taken onto and then

through the other. We can show that it is possible to write the product LL

as

LL = (cosθ+ B̂sinθ)(+dn) (3.68)

where d is the three-dimensional vector representing the length and direction

of the common perpendicular, B̂ = d̂I (with d̂ = d/
√

(d)) and θ is the angle

between the lines as measured when translated to lie in the same plane along

d. We see that the above is a combination of a rotation rotor and a translation

rotor; we will see later that rotors which take one object (of the same grade)

into another object are often formed in the way we have outlined here for

lines.

3.9 Chapter summary

In this chapter we have examined how the Conformal Model can be used

to represent geometric primitives such as lines, planes, spheres, circles and

point pairs. We have also shown how, within the Conformal Model, ro-

tors can be applied to these objects just as they would be applied to points.

The Conformal Model outlined in this chapter will form a foundation upon

which much of the results of this thesis will be based.

- 67 -

“As soon as we started programming, we found to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging
had to be discovered. I can remember the exact instant when I
realised that a large part of my life from then on was going to be
spent in finding mistakes in my own programs.”

— Maurice Wilkes

LibCGA — A Library for
Implementing GA-based Algorithms

4

Any GA-based algorithm must have a method of implementation to be truly

useful in any engineering sense. In order to provide a solid base for the

development of such algorithms it was decided that a good general-purpose

GA library should be created in order to allow for rapid prototyping of GA-

based solutions. The library was called libcga.

4.1 Requirements

There were a number of design aims when designing the libcga software

library.

• Fast — The library should be numerically efficient.

• User-friendly — The library Application Programmer’s Interface (API)

should be convenient and simple to use.

• Compact — The library should be small enough to be embedded within

LibCGA — A Library for Implementing GA-based Algorithms

a larger solution.

• Thin — The library should be sufficiently low-level so as to introduce

little penalty for wrapping it in a higher-level API.

These design aims were, by their nature, highly coupled. Research into

CGA would influence the design of the library and design of the library

would promote and influence the direction of the research. Because of this

I decided to make use of the spiral model of software development where

the software is incrementally improved from an initial prototype to adapt to

changing design parameters and new features.

It was decided that the implementation should follow the Object-Oriented

Programming (OOP) methodology due to the natural mapping between mul-

tivectors and operators in GA and objects and object-operators in OOP. The

C language was chosen because of the availability of high-quality optimis-

ing compilers and the relative closeness of the language to machine code,

minimising the amount of intermediary code output from the compiler.

One way in the C language of writing object-orientated programs is to

make use of opaque data structures. An internal structure type is defined and

all library API functions communicate with the library passing a pointer to

the structure as the first argument. All access to the structure is done by

the library through this pointer so the library user need not know of the

structure’s layout. This is an example of data hiding, a common feature of

object-orientated programming.

- 69 -

LibCGA — A Library for Implementing GA-based Algorithms

AG =



+A +A +A +A −A −A −A −A

+A +A +A +A −A −A −A −A

+A −A +A +A +A +A −A +A

+A −A −A +A −A +A +A −A

+A −A +A +A +A +A −A +A

+A −A −A +A −A +A +A −A

+A +A −A +A +A −A +A +A

+A +A −A +A +A −A +A +A



Figure 4.1: Example product matrix for the geometric product in A(,). Ai j...k is the element

of A proportional to eie j...ek.

4.2 Overview

Any multivector M in A(p,q) can be formed from a linear combination of

all possible basis vector products up to grade p+ q. For A(,), the highest

grade object is eeeeē so

M = a+ae+ae+ ...+aee+ ...+aeeeeē

Initially libcga stored a multivector as the vector [a,a, ...a] ′ imple-

mented as an array. Later optimisations added the ability to keep track of

which grades were present in the multivector and this will be addressed later.

The various multivector products may be found by expanding out the

terms of the product and simplifying using a product table similar to Table

- 70 -

LibCGA — A Library for Implementing GA-based Algorithms

2.1. Alternatively, one may view the multivectors A,B,C as the vector repre-

sentations A,B,C and calculate C = AB using

C = AGB

where AG is a ×  matrix whose elements depend on the operator used

(in this case the geometric product) and the elements of A. A little thought

makes it clear that all linear operators can be expressed in this form and so

all the operators we have defined can thus be expressed. An example matrix

for the geometric product in A(,) generated by Gaigen is shown in figure

4.1.

This method is somewhat sub-optimal since n×n matrix-vector multipli-

cations require O(n) operations. Techniques were developed to reduce this

general form to a set of more compact, efficient operations and these will be

outlined in section 4.3.3.

4.3 Implementation Details

4.3.1 Coding style

In common with many modern APIs it was decided the library should posses

an object-oriented API. One way in the C language of writing object-orientated

programs is to make use of opaque data structures. An internal structure type

is defined and all library API functions communicate with the library pass-

ing a pointer to the structure as the first argument. All access to the structure

is done by the library through this pointer so the library user need not know

- 71 -

LibCGA — A Library for Implementing GA-based Algorithms

1 struct {

2 int num widgets;

3 char widget name[255];

4 } widget s;

5 typedef struct widget s widget t;

6

7 widget t∗ widget new() {

8 return (widget t∗)malloc(sizeof(struct widget s));

9 }

10 void widget delete(widget t ∗self) {

11 free(self);

12 }

13 void widget set num(widget t ∗self, int num) {

14 self−>num widgets = num;

15 }

Figure 4.2: Object-orientation in C.

of the structure’s layout. This is an example of data hiding, a common feature

of object-orientated programming.

An example of how to create constructor, destructor and member access

functions in C is given in Figure 4.2. From the programmers’ point of view

they only have to use the API function passing the handle returned by wid-

get new() as the first argument.

- 72 -

LibCGA — A Library for Implementing GA-based Algorithms

4.3.2 Product Table Generation

Product tables were generated with a Perl script in which n-vector compo-

nents were represented by a string of digits. For example, the trivector eee

was represented as ‘145’. Similarly eee was reordered and represented as

‘-145’ so that the possible representations conformed to a set of basis ele-

ments.

Any geometric product between two blades was then calculated using

the algorithm represented in figure 4.3. The algorithm can be outlined as

followed:

1. Sort first component numerically by exchanging neighbours and alter-

nate sign once for each swap.

2. Reverse sort second component numerically by exchanging neighbours

and alternate sign once for each swap.

3. If the last digit of the first component and first digit of the second com-

ponent match, change sign as appropriate to the square of the compo-

nents and remove.

4. If there are more pairs to match, goto step 3.

5. Concatenate components and output.

Other product tables were computed from the geometric product. For

example a ·b = .(ab+ba).

- 73 -

LibCGA — A Library for Implementing GA-based Algorithms

452145

145

+

−

+

542

4214

1 2+

−1

+1

Swapping

Elimination

e145e452

+e12

Sign

Figure 4.3: Example of finding that ee = e with e =−, e = .

These product tables were then used to generate optimal n-vector, m-

vector product routines in C which operated directly on the multivector com-

ponents.

4.3.3 Grade Tracking

Table 4.1 shows the number of floating-point multiplications to compute the

geometric product of a pure r-vector and pure s-vector. As you can see even

for a worst case bivector-bivector product only 100 multiplications are re-

quired compared to 1024 for the general product. This suggests that signifi-

cant speedups can be obtained if only those grades present in the multivector

are considered.

The script used to generate the product tables above could also be used to

generate specific n-vector, m-vector product tables. These specific tables often

used far fewer flops than required for the general operator. This effectively

- 74 -

LibCGA — A Library for Implementing GA-based Algorithms

s

0 1 2 3 4 5

0 1 5 10 10 5 1

1 5 25 50 50 25 5

2 10 50 100 100 50 10
r

3 10 50 100 100 50 10

4 5 25 50 50 25 5

5 1 5 10 10 5 1

Table 4.1: Multiplication count for finding the geometric product of an r-vector and s-vector.

exploited the sparseness of the product matrix for single-grade products.

When looking for an optimisation strategy the following properties are

desirable:

• Transparent to the programmer — the core libcga API.

• Straightforward to implement.

• Generic (i.e. not limited to A(,).

• Provide significant reduction in floating point operation count.

It was clear that optimised product implementations provided significant

speedups but required the programmer to know in advance which grades

were present in a multivector (not always possible if the multivector is ulti-

mately due to user input). The solution was to represent the general multi-

- 75 -

LibCGA — A Library for Implementing GA-based Algorithms

vector M as a sum of single-grade objects

M = 〈M〉+ 〈M〉+ ...+ 〈M〉n

where 〈M〉i represents taking the grade i component of M and thus the prod-

uct of the multivectors A and B is

AB = 〈A〉 〈B〉+ 〈A〉 〈B〉+ ...

+〈A〉 〈B〉+ 〈A〉 〈B〉+ ...

+〈A〉n 〈B〉n−+ 〈A〉n 〈B〉n

Now let GA be the set of grades present in A and GB be the set of grades

present in B so that

〈A〉i =  if i /∈ GA

〈B〉i =  if i /∈ GB

hence it can be said that

〈A〉i 〈B〉 j =  if i /∈ GA or j /∈ GB

and need not be computed. If GA and GB are sufficiently small with respect

to {...} then significant advantage may be obtained.

In order to implement this it was necessary to record in the multivector

which grades were present. The most time and space efficient method to do

this in C is via a bit-mask. This technique keeps a 32-bit unsigned integer

called the grade mask. If bit n in the mask is set then grade n is present. This

does limit the maximum grade to 32-bits but this can be extended to 64-grade

- 76 -

LibCGA — A Library for Implementing GA-based Algorithms

1

22

1

3

11

3

2 4

24

55

5 5

1× 2

3× 1

4× 2

5× 5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

...

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

...

...

Figure 4.4: The method of grade tracking represented graphically. The shaded numbers rep-

resent the grades present in each multivector.

by using a 64-bit integer on certain systems (e.g. the IA-64 next generation

Intel processor) or even higher order grades by utilising multi-word masks.

The advantage of using the object-orientated programming methodology

now became clear, in that a grade mask field could be added to the opaque

multiv t data type without changing the API. Also, since the program using

libcga only referenced this structure through a pointer, existing programs

were binary compatible, that is they didn’t have to be recompiled.

The product function itself was modified to check for the presence of each

grade-pair in the two input multivectors and only call the appropriate set of

single-grade routines. It was the job of each single-grade product function to

set the appropriate grade mask bits in the output multivector. This approach

is shown diagrammatically in figure 4.4

- 77 -

LibCGA — A Library for Implementing GA-based Algorithms

4.4 Visualising Objects within the Algebra

Many CGA visualisation solutions exist[50]. The libcgadraw companion li-

brary to libcga was created as a convenience library for visualising the out-

put of algorithms implemented with libcga. The library uses an approach

similar to that of the CLUDraw library whereby the results of a GA-based

algorithm may be displayed directly on the screen. The output of GA-based

algorithms may be categorised into a number of geometric primitives they

represent. Below is a selection of the visualisation algorithms used. In sec-

tion 5.3 we will develop some further algorithms for visualising the output

of algorithms working in non-Euclidean geometries.

4.4.1 Point Pairs

Point pairs are represented by the wedge product of the representations of

the points. That is to say that the point pair (a,b) is represented by F(a)∧

F(b). Using the method of projectors in section 3.5.1 the representations of a

and b can be extracted and plotted as shown in algorithm 4.5.

4.4.2 Lines

We render lines by intersecting them with some sphere centred on the origin

and drawing a line between the two points of intersection. The radius of

the sphere used effectively provides a upper limit to the distance a line may

be from the origin while still being rendered. If the line is further from the

origin than the radius of the sphere it will not intersect the sphere.

- 78 -

LibCGA — A Library for Implementing GA-based Algorithms

Require: T , a representation of a point-pair.
1: T ′ := √

T  T
2: P := 

(+T ′)
3: B := P [T ·n]
4: A := −P̃ [T ·n]
5: a := F−(A)
6: b := F−(B)
7: glBegin(GL POINTS);
8: glVertex(a); glVertex(b);
9: glEnd();

Figure 4.5: Extracting and rendering a point pair.

This is in actual fact a desirable property since it allows for a ‘horizon’

to be set. Lines, being infinite in extent, have end points at infinity which

cannot easily be expressed within OpenGL. Instead, by setting the radius of

the sphere to be sufficiently large we may approximate such lines sufficiently

for rendering in many problems. The specific method is given in algorithm

4.6.

4.4.3 Planes

A plane may easily be rendered via its dual representation outlined in section

3.7.2. Recall that, for a plane P, if p = PI ≡ P∗ then

p = n̂+dn

where n̂ is the plane normal and d is its perpendicular distance from the

origin.

- 79 -

LibCGA — A Library for Implementing GA-based Algorithms

Require: L, a representation of a line.
Require: rmax, maximum distance from origin to render lines.

1: r := 

2: repeat
3: intersect := false
4: S := representation of sphere centred on origin radius r.
5: T := L∨S
6: if T 6=  then
7: intersect := true
8: Extract point pair from T to a,b as in algorithm 4.5.
9: end if

10: r := r+

11: until intersect = true or r > rmax

12: if intersect = true then
13: glBegin(GL LINES);
14: glVertex(a); glVertex(b);
15: glEnd();
16: end if

Figure 4.6: Rendering the representation of a line, L.

4.4.4 Circles

Recall that the circle passing through the point-representations P,P and P

is represented by C = P∧P∧P and the plane common to these points is

P∧P∧P∧n hence we can easily find the plane of the circle, P via

P =C∧n

To find the radius and centre of the circle we use the dual form of the

circle given in 3.6.1 and [35]

C∗ = B−



ρ
n

- 80 -

LibCGA — A Library for Implementing GA-based Algorithms

Require: C, a representation of a circle.
1: ρ :=

√
(C∗)

2: b := F−
(
C∗
[
+ 

C∗n
])

3: P :=C∧n
4: n̂ := spatial(P∗)
5: Draw circle in plane with normal n̂ centre b, radius ρ.

Figure 4.7: Rendering the representation of a circle, C.

where C∗ ≡ CI here (the dual of C with respect to the pseudoscalar for the

plane), B is the centre of the circle and ρ is the radius. The radius can be

found as in section 3.6.1.

The final algorithm (for three dimensions) is outlined in algorithm 4.7. In

this algorithm the function spatial() extracts the components of the argument

which contain no part of e or ē.

4.4.5 Spheres

Finally spheres may be rendered simply by noting that circles are two-dimensional

spheres and all the formulæ for obtaining centres and radii hold true. Ex-

tracting the null-vector representation of the centre, B = F(b), and the radius,

ρ, of a particular sphere Σ is therefore straightforward:

B = ΣnΣ

and

ρ
 = (Σ∗) .

- 81 -

LibCGA — A Library for Implementing GA-based Algorithms

4.5 Chapter summary

In this chapter we outlined the design decisions for the GA library used to

generate results in this thesis. Many of the figures in this thesis were gener-

ated by code based upon this library. Further we have examined techniques

for extracting useful properties of objects within the conformal model with a

view to visualising them on a display device.

- 82 -

“Equations are just the boring part of
mathematics. I attempt to see things in
terms of geometry.”

— Stephen Hawking

Non-Euclidean Techniques

5

In this chapter we will extend the conformal model to cover non-Euclidean

geometries. There has been some work in extending the conformal model

to spherical geometry[38] and here we present a method for extending it to

hyperbolic geometry. We also briefly outline how such an approach may be

modified to encompass the work on spherical geometry.

Euclidean geometry, the geometry of the plane, was first defined[19] by

Euclid’s Postulates:

1. A straight line segment can be drawn joining any two points.

2. Any straight line segment can be extended indefinitely in a straight

line.

3. Given any straight line segment, a circle can be drawn having the seg-

ment as radius and one endpoint as centre.

4. All right angles are congruent.

Non-Euclidean Techniques

5. If two lines are drawn which intersect a third in such a way that the sum

of the inner angles on one side is less than two right angles, then the

two lines inevitably must intersect each other on that side if extended

far enough.

This last postulate is equivalent to what is known as the parallel postulate,

which states loosely that two parallel lines will never meet, even at infinity.

In this chapter we shall explore hyperbolic geometry, one of the simplest

geometries that satisfy all but this last postulate.

5.1 Hyperbolic Geometry

Hyperbolic geometry is usually represented in two dimensions on the Poincaré

disc. This is a unit disc centred on the origin onto which all space is mapped.

A metric is defined within the disc[7], along with a set of congruence trans-

formations. The boundary circle of the disc represents the points at infin-

ity. Everywhere outside the disc is inaccessible to the hyperbolic geometry.

Straight lines, called d-lines[7], are represented by circular arcs which erupt

normal to the boundary circle. Perhaps one of the most famous examples of

this geometry is given in Escher’s Circle Limit series of wood prints, an exam-

ple of which is recreated in figure 5.1. In these prints infinite tessellations of

hyperbolic space are represented mapped to the Poincaré disc and they show

the circular nature of d-lines, although Escher was unaware of the Poincaré

disc model at the time the prints were made.

- 84 -

Non-Euclidean Techniques

Figure 5.1: A re-creation of Escher’s Circle Limit III, a depiction of hyperbolic geometry on

the Poincaré disc. Taken from [18].

5.2 Extending the Conformal Model

In this section we shall extend the conformal model we have developed to

represent Euclidean geometry to the hyperbolic geometry of the Poincaré

disc and show how many results which are tedious to prove using existing

metric-based derivations become simple and, in some cases, obvious using

the GA-based approach.

All rigid-body transformation (i.e. rotation and translation) rotors in the

Euclidean approach described in previous chapters leave n invariant, i.e.

RnR̃ = n for all such rotors R. They also leave n̄ invariant. We have already

identified n and n̄ with the points at infinity and the origin respectively. We

shall now show that, since a geometry may be defined by its congruence

- 85 -

Non-Euclidean Techniques

transformations, changing which vectors are left invariant by rotors will pro-

duce a different geometry.

Suppose we choose to restrict the rotors such that they keep e invariant.

Without loss of generality, we deal with a conformal extension of R and

write down a set of four basis vectors

E = e E = e E = e E = ē (5.1)

and thus form the rotors Rk` = exp
(

α

Ek ∧E`

)
with k, ` ∈ {,,,}. Applying

them to e via Rk`eR̃k` ≡ Rk`eR`k, we find the bivector generators of the rotors

which preserve e are ēe, ēe and ee. The latter just corresponds to rotations

in the ee plane, and hence the former two must be the generators of trans-

lations. We propose, therefore, that a rotor which translates the origin to the

vector x must be given by a multivector of the form

Tx = exp
(

f (r)


ēr̂
)

(5.2)

where r = |x|, r̂ = x/|x| and f (r) is some function of r yet to be determined.

Noting that (ēe) = (ēe) = + and therefore (ēr̂) = + we can take the

power series expansion of Tx and collect like-coefficients to obtain

Tx = cosh
(

f (r)


)
+ ēr̂ sinh

(
f (r)


)
(5.3)

We now consider how to represent the origin. Our choice is restricted in

that the origin must differ from the point at infinity and, to retain isotropy,

must not contain components parallel to e or e. Either n or n̄ would be a

suitable choice to investigate; we choose a multiple of n̄ to retain compatibil-

ity with the Euclidean case.

- 86 -

Non-Euclidean Techniques

As with the Euclidean case we wish to impose a normalisation condition

on the null-vectors, X = Fe(x), such that

X · e =− (5.4)

where we use Fe(x) to represent the mapping defined by the geometry gener-

ated by the rotors which preserve e. We would also prefer if we could contain

some relation to our mapping for Euclidean geometry. Hence we continue

by specifying that the origin is represented by null-vectors parallel to −n̄.

We can now find the representation of the general point x as the transla-

tion along x of the origin. Writing c = cosh
(

f (r)


)
and s = sinh

(
f (r)


)
Fe(x) = Tx (−n̄) T̃x (5.5)

= [c+ ēr̂s] (−n̄) [c− ēr̂s] (5.6)

= −cn̄+scr̂+ sn. (5.7)

Letting C = cosh(f (r)) and S = sinh(f (r)) gives c = (C+)/, s = (C−)/,

sc = S/ and hence

Fe(x) =



n(C−)−




n̄(C+)+Sr̂

=



[(C−)n+Sr̂−(C+)n̄] (5.8)

As required, (Fe(x)) =  and Fe(x) · e =−.

It remains to choose a sensible form for f (r). We seek to choose f (r) such

that the representation Fe(x) is similar to our Euclidean representation F(x)

since this will allow us to use many of the same techniques we developed for

the Euclidean case. We can rewrite our Euclidean representation in terms of

- 87 -

Non-Euclidean Techniques

r and r̂ as

F(x) =


λ
(rn+λrr̂−λ

n̄) (5.9)

where λ has been introduced as a fundamental unit of length to make the

equation dimensionally consistent. We shall discuss this later.

If we wish that Fe(x) be similar to F(x) then we have the conditions

S
C+

=
sinh(f (r))

cosh(f (r))+
=

r
λ

(5.10)

and
C−

S
=

cosh(f (r))−

sinh(f (r))
=

r
λ

(5.11)

so the mapping function becomes

Fe(x) =
C+

λ
[xn+λx−λ

n̄] (5.12)

=
cosh(f (r))+

λ
[xn+λx−λ

n̄]o (5.13)

which has a degree of similarity to the expression for F(x). Further, assuming

r and λ are positive, we can see from equation 5.10 that r < λ since sinh(A)<

+ cosh(A) for all A.

Given equations 5.10 and 5.11, we can eliminate sinh(f (r)) to give

cosh(f (r))−

cosh(f (r))+
=

r

λ
(5.14)

and therefore cosh(f (r)) = (λ+ r)/(λ− r). Substituting into either 5.10 or

5.11 gives

f (r) = sinh−

(
λr

λ− r

)
(5.15)

- 88 -

Non-Euclidean Techniques

and hence we can form the following expressions for sinh(f (r)) and cosh(f (r))

sinh(f (r)) =
λr

λ− r
and cosh(f (r)) =

λ

λ− r
−. (5.16)

Inserting these into equation 5.13 gives the final form of the non-Euclidean

mapping function

Fe(x) =


λ− x
(xn+λx−λ

n̄) (5.17)

We can also show, by substituting the results in equation 5.16, that the

form of the translation rotor given in equation 5.3 can also be written as

Tx =
√

λ− x
(λ+ ēx) (5.18)

Some discussion of the relevance of λ is worthwhile here. Notice that in

order for the translator to remain real-valued, x≤ λ. We can never therefore

translate the origin outside of a circle radius λ centred upon it. The value of

λ gives the distance to the boundary of a region of inaccessible space from

the origin. It is in effect a circular boundary to the geometry. This circle cor-

responds directly to the unit-circle boundary in the Poincaré disc represen-

tation if λ =  and to simple dilations of the Poincaré representation if λ 6= .

To maintain compatibility with the Poincaré representation, we usually set λ

to be unity.

The rotor in equation 5.18 is, by construction, the rotor which takes us

from the origin to position x. Interestingly translations in hyperbolic geome-

tries do not commute; that is, moving a position vector a along another vector

b does not, in general, give the same result as moving b along a. This can be

- 89 -

Non-Euclidean Techniques

Figure 5.2: An illustration of how translation, interpreted as movement along geodesics, in

hyperbolic geometry is non-commutative.

- 90 -

Non-Euclidean Techniques

seen by tracing the grid in figure 5.1 as shown in figure 5.2. In this figure

we translate along the vector drawn in red twice and translate along the vec-

tor marked in green once. Depending on the order of application we arrive

at different locations. It is therefore geometrically clear why, unlike the Eu-

clidean case, the hyperbolic translation rotors Tx and Ty do not commute for

two different positions x and y. It is also clear algebraically since

TxTy = α(λ+λē(x+ y)− ēxyē)

TyTx = α(λ+λē(x+ y)− ēyxē).

These are only identical if xy = yx, i.e. if x and y are parallel. This means

that Ty−x is not the rotor taking us from position x to position y. However,

this is not a problem since we can always achieve this motion via going back

through the origin, and forming

Tx 7→y = TyT−x (5.19)

Since composition of rotors always produces another rotor, this means that

we have the same freedom as in the Euclidean case to prove a relation we

are interested in, at some special position and orientation, and then use the

covariant rotor structure to generalise the result to general positions and ori-

entations. Spatial rotations about the origin are of course achieved as before

with rotors of the form R = exp
(

θ

ee
)
.

The final motion we should consider is the analogue of inversion. Unlike

in the Euclidean case, inversion using reflection in e is now a fully covari-

ant operation. Specifically, if R represents any combination of rotation and

- 91 -

Non-Euclidean Techniques

translation, and A is some object in the space, we have

eAe 7→ ReR̃RAR̃ReR̃ = eRAR̃e = R(eAe)R̃ (5.20)

The last equality means that transforming A first and then reflecting is the

same as reflecting and then transforming, which is what is required of a co-

variant operation. The availability of this reflection operation is very useful.

The translation rotors discussed above clearly only allow us to move around

within the interior of the disc r < λ. By reflection in e, as we shall see below,

we are able to jump into a ‘dual world’ outside the disc.

Having achieved a representation function and discussed the set of mo-

tions, we should examine this new space in relation to the Poincaré disc,

which we have claimed it is equivalent to with a view to justifying this claim.

To do this we shall examine the distance function, i.e. how we assign a non-

Euclidean distance function between points in the space.

If we consider a simple rotation, exp
(

θ

 B̂
)
, where B̂ is some unit spatial

bivector, then we are used to the idea that θ is the correct measure of distance

(here angular) to describe the transformation. Thus if we consider again the

translation rotor in equation 5.3, Tx = exp
(

f (r)
 ēr̂

)
, we would expect that the

correct distance measure to associate with it would be f (r). This would be

a viable option, except that for points close to the origin of the disc (r� λ)

it is desirable that ordinary Euclidean notions of distance to apply, at least

approximately. It is clear that ē = (/)(n− n̄) and the n̄ part of this, when

exponentiated and applied as in equation 5.8, has no effect to first order on

- 92 -

Non-Euclidean Techniques

the origin point −n̄, whereas the n part does, i.e.

Tx(−n̄)T̃x ≈
(
+

f (r)


(n− n̄)r̂


)
(−n̄)

(
−

f (r)


(n− n̄)r̂


)
=

(
+

f (r)


nr̂


)
(−n̄)

(
−

f (r)


nr̂


)
. (5.21)

This means that, to first order near the origin, the Tx rotor approximates in

its actions the Euclidean translation rotor corresponding to distance f (r)/

rather than f (r), i.e.

Tx ≈ +
f (r)


nr̂


(5.22)

For this reason, we take the non-Euclidean distance between a point and

the origin to be given by f (r)/ rather than f (r). Calling this non-Euclidean

distance function d(r), and using equation 5.16 along with the identity

sinh
(z


)
=

[
coshz−



] 


,

gives

d(r) = sinh−

(
r√

λ− r

)
(5.23)

We note this approximates to r/λ for r � λ, i.e. we recover the Euclidean

distance measured in units of λ.

This function gives us the distance of a point from the origin, but what

about the distance between two general points, neither of which is at the ori-

gin? One of the major advantages of the conformal approach to Euclidean

geometry is that it gives us an inner product formula for computing the dis-

tance between any two points, and we would hope that the same would be

possible here. This is indeed the case. Let X be the null vector correspond-

ing to the point x = r r̂ using our representation, equation (5.9). Then, since

- 93 -

Non-Euclidean Techniques

n · n̄ = , we can rewrite equation 5.23 as

d(r) = sinh−

(√
−



X · (−n̄)

)
(5.24)

Note that X · (−n̄) is the inner product of X with the null vector representing

the origin. Two points in any general positions can be wound back using

a common translation rotor so that one of them ends up at the origin. For

example, let Ty be the translation rotor that takes Y back to the origin, then

X ′ = TyXT̃y Y ′ = TyY T̃y =−n̄

so that X ′ ·Y ′ = (TyXT̃y) ·TyY T̃y = X ·Y = X ′ · (−n̄). Since we know that a func-

tion of −
X ′ · (−n̄) gives the distance between the two points from equa-

tion (5.24), we can now write this distance in terms of X ·Y . Note that at no

stage in the process has the inner product between the null vectors changed

(the inner product is rotor invariant); thus we have succeeded in defining a

distance between general points in terms of inner products. If the general

points are x and y with representatives X and Y , the expression for the dis-

tance function is thus

d(x,y) = sinh−

(√
−



X ·Y

)
(5.25)

which is a satisfyingly simple relationship. As in the Euclidean case, it is

a monotonic function of X ·Y . If we take the inner product of X and Y we

obtain, using equation 5.9,

X ·Y =


(λ− x)(λ− y)
[−λ

x−λ
y+λ

xy]

=
−λ

(λ− x)(λ− y)
(x− y) (5.26)

- 94 -

Non-Euclidean Techniques

Written in terms of the points themselves, the distance between the points is

therefore

d(x,y) = sinh−

(
λ

√
(x− y)

(λ− x)(λ− y)

)
. (5.27)

Armed with this distance function, we can now investigate geodesics in

the disc. These are the lines that are ‘straightest’ in the geometry defined by

the distance function – more precisely, the arc length along them is extremal.

We will not give the details, but show some numerically computed exam-

ples in figure 5.2. In calculating these we have taken λ = , so the disc is

now the unit disc ordinarily considered in the Poicaré model. We find that

each geodesic is an arc of a circle, and that each of them asymptotically ap-

proaches the bounding unit circle at right angles. At this point we can start

making contact with the description of the classical approach to the Poincaré

disc[7]. The geodesics there are called d-lines. They are not justified in terms

of being geodesics, but simply defined as being arcs of circles which cut the

boundary at right angles. However the distance function given in [7] in terms

of distance to the origin is

d(x,) = tanh−(|x|) (5.28)

and therefore agrees with our identification of d(r) = f (r)/, using equation

5.16 and taking λ = .

This distance function allows us to define a geometrically analogous dila-

tor about the origin. Suppose we dilate some vector x about the origin so that

x 7→ x ′. We would expect that, given a dilation factor of a, d(x ′,) = ad(x,)

- 95 -

Non-Euclidean Techniques

Figure 5.3: Geodesics emanating from a point in hyperbolic space. They all intersect the unit

circle at right angles and each is in fact the arc of a circle. (λ =  has been taken

here.)

- 96 -

Non-Euclidean Techniques

or, equivalently,

tanh−(|x ′|) = a tanh−(|x|)

|x ′|= tanh[a tanh−(|x|)]

|x ′|
|x|

= tanh[a tanh−(|x|)](|x|)−.

We see that a hyperbolic dilation by a factor of a is therefore equivalent to an

Euclidean dilation by tanh[a tanh−(|x|)](|x|)−.

Thus far, apart from the formula for non-Euclidean distance in terms of

X ·Y , we have only mirrored what is already known. We now start to show

the power of the conformal GA approach to this geometry, by showing how

the operations and objects defined previously in conformal Euclidean geom-

etry have immediate analogues here, representing a considerable unification

and saving of effort. It may also be worth noting here that the power of

this approach extends immediately to three or more dimensions where the

Poincaré disc becomes a sphere. On the other hand, to provide a computa-

tional scheme which is somewhat akin to our rotor formulation, Brannan et

al [7] introduce complex coordinates to work in the Poincaré disc and use

Mobius transformations in place of the rotors. These are effective compu-

tationally in two dimensions, but of course the complex variable apparatus

does not extend at all to three dimensions. Also the conformal setup enabling

points, lines, circles, spheres and planes to be integrated into one algebraic

system does not exist in the complex variable approach, even in two dimen-

sions.

- 97 -

Non-Euclidean Techniques

5.2.1 Geometric Objects in Hyperbolic Geometry

In this section we shall develop representations for geometric objects within

hyperbolic geometry as we did previously for Euclidean geometry.

Hyperbolic lines

Having dealt with distances between points, let us start with the next most

fundamental objects — lines. In Euclidean space we have seen that these

are given by L = n ∧ A ∧ B, where A and B are the representatives of any

two points on the line. Rotor transformations are able to move lines around

successfully because for either a rotation or translation, RnR̃ = n. Thus when

we perform RLR̃ we end up with n∧(RAR̃)∧(RBR̃) which is a line through the

transformed points. Dilations also fit into this, since although they introduce

a scale factor when acting on both n and general points, this still produces

the intended line up to a scale factor in the Euclidean case.

This discussion makes it clear what a line must be in the conformal ap-

proach to hyperbolic geometry. Instead of using n, we must use the invariant

object e. Thus we define a hyperbolic line as

L = e∧A∧B (5.29)

where A and B are the two points through which we wish it to pass. This

construction will guarantee covariance of the definition of a line, for the same

reasons as in the Euclidean case (namely here that ReR̃ = e for any allowable

rotor R).

- 98 -

Non-Euclidean Techniques

We are faced with the immediate, very important question of what pre-

cisely is the object we have constructed. Ideally it should correspond to the

d-line geodesics we have just discussed. To determine whether a position

X lies on this line, we need to solve X ∧ L = . Let us take x = xe+ xe,

a = ae+ ae and b = be+ be. Then, taking λ =  for convenience, it is

easy to show the resulting equation for x is of the form

x+ x−px−qx+=  (5.30)

where p+q > . Specifically, one finds

p =−




{(a+a+)b−(b+b+)a}
a b−a b

q =−




{−(a+a+)b+(b+b+)a}
a b−a b

Equation 5.30 is precisely the form of equation given for d-lines in Brannan

et al[7] page 283 and shows that indeed our recipe in terms of wedging with

e has worked.

We can combine the notions of lines and distance, by asking for the ‘hy-

perbolic midpoint’ of the line segment joining two positions a and b. This is

that point lying on the d-line between a and b which is an equal hyperbolic

distance from each. Brannan et al[7] deal with this on page 288, but consider

only the easiest case where the two points lie along a diameter of the unit

disc.

We know, in the Euclidean case that forming A+B will give a non-null

point consisting of a multiple of the null vector representing the desired mid-

point, plus a multiple of the point at infinity n. We hypothesise that we will

- 99 -

Non-Euclidean Techniques

get the same behaviour here, but with e playing the role of n. We can use

two different methods to obtain these results. The second is faster than the

first, but we outline both, since they both typify the techniques available for

use and serve as good illustrations of the power of the covariant method for

hyperbolic geometry.

Firstly, since we can move objects around at will, let us establish the result

in the simplest case – where the two points are symmetrically disposed about

the origin, e.g. let a = αe and b =−αe. Clearly, by symmetry the hyperbolic

midpoint must be the origin itself, so we write

A+B = β(−n̄)+δe (5.31)

where δ and β are scalar multiples to be determined. Since A+B= 
λ−α (α

n−

λn̄) it is easy to see that we must have

δ =
α

λ−α
and β =

(α+λ)

λ−α
(5.32)

Meanwhile, we note that

A ·B =−
αλ

(λ−α)
(5.33)

and some straightforward manipulation then tells us that

δ =
√

−A ·B− and β =
√

−A ·B. (5.34)

We may solve the more general problem by rearranging equation 5.31 to get

−n̄ =
√

− 
A ·B

{



(A+B)− e

(√
−




A ·B−

)}
(5.35)

- 100 -

Non-Euclidean Techniques

Everything on the right hand side is covariant, and the separation between A

and B is controlled by a variable which has been kept general (α), so by em-

ploying translation and rotation rotors on the right hand side we can make A

and B line up with any two desired points. Meanwhile the left hand side will

keep track, and must still remain the midpoint. To see this, note that its ‘dot’

with the new points that A and B transform into will remain constant during

this process. The e term just remains invariant. For two completely general

points A and B, therefore, their hyperbolic midpoint is given by

Xmid =
√

− 
A ·B

{



(A+B)− e

(√
−




A ·B−

)}
(5.36)

which is a fully covariant expression.

The alternative method, which is easier computationally, is as follows.

Let us write equation 5.31 again but this time with Xmid in place of −n̄ and

with a general A and B in place from the beginning. So

A+B = βXmid +δe (5.37)

Rearranging, we have

Xmid =


β
(A+B−δe) (5.38)

which shows that our assumption about the form of the midpoint is in fact

valid. This is because, by dotting the right hand side with A and B in turn,

we obtain

Xmid ·A = Xmid ·B =


β
(A ·B+δ) (5.39)

This means that Xmid is indeed equidistant, in a hyperbolic sense, from A and

- 101 -

Non-Euclidean Techniques

B. Moreover,

Xmid ∧ (e∧A∧B) =  (5.40)

so it correctly lies on the d-line joining them.

It just remains to fix δ and β by requiring that Xmid is null and is correctly

normalised. The null requirement gives

A ·B+δ+δ
 =  (5.41)

and requiring Xmid · e =− yields

β = δ+ (5.42)

Solving these yields equation 5.34 as before, and we recover equation 5.36.

Hyperbolic circles

A great deal of hyperbolic geometry is concerned with hyperbolic circles, i.e.

the locus of points that are at a constant hyperbolic distance from a given

centre. We can immediately hypothesise that such a circle, passing through

the points A, B, D should be given by the trivector.

C = A∧B∧D (5.43)

The set of points X which satisfy X ∧C =  can be found in a similar manner

to the Euclidean case since the null-vector representation is the same up to a

scale factor – i.e. in the Euclidean case we know that X = 
λ [xn+λx−λn̄]

and in the hyperbolic case X = 
λ−x [x

n+λx−λn̄]. If the above hypothesis

is true, we can immediately deduce the somewhat surprising – though in

- 102 -

Non-Euclidean Techniques

fact true – conclusion that hyperbolic circles are also Euclidean circles. It

turns out that it is just their centres that are, in general, different.

To establish that C is a hyperbolic circle, as well as clearly a Euclidean one,

we can take the special case of a circle centred at the origin. By symmetry,

this must be both a Euclidean and hyperbolic circle. Let this have Euclidean

radius ρ. If we recall our earlier work, then for the scaled version of the null

point representative, the inner product between two points A and B is given

by

A ·B =−


λ
(a−b) (5.44)

Then, since X ·B = − 
λ (x−b) = − 

λ (ρ)
 for a circle centre B and radius ρ,

we have that

X · (B−


λ
(ρ)n) =  (5.45)

giving C∗ = B− 
λ (ρ)

n, where C is the trivector describing the circle. Thus if

B is the origin, so that B =−
 n̄, the dual of C is given by C∗ =− 

λ {ρ
n+λn̄}.

Now, since n+ n̄ = e, we can write ρn+λn̄ as

ρ
n+λ

n̄ = ρ
e+(λ−ρ

)n̄ (5.46)

We can normalise this to C = (C∗) =  via the scaling

C∗ 7→ α(ρn+λ
n̄) such that (C∗) = 

and hence α = 
ρλ

, thus

C∗ =


ρλ
(ρn+λ

n̄) =


ρλ
[ρ

e+(λ−ρ
)n̄]. (5.47)

- 103 -

Non-Euclidean Techniques

This displays the dual to C as a linear combination of the vector representing

the origin, which is here the centre of the circle, and a multiple of e. This is

the covariant form we require for generalisation. Note

X · (IC) =


ρλ
{X · (ρ

e+(λ−ρ
)n̄)}=



ρλ
{−ρ

−(λ−ρ
)X · (−n̄)} (5.48)

shows us how X maintaining a constant hyperbolic distance from the centre

(−n̄) is guaranteed by X · (IC) = , in which case we have

X · (−n̄) =
−ρ

(λ−ρ)
. (5.49)

Let us act on IC = I(A∧B∧D) with hyperbolic rotors, to move the 3 points

around as we wish. These same rotors acting on the right hand side of equa-

tion 5.46 mean that we will continue to get the required behaviour of con-

stant hyperbolic distance from the transformed centre, since the rotors will

take the origin to the new centre of the circle, say P. Thus indeed, the wedge

of 3 points generates a hyperbolic circle, and moreover the above enables us

to extract its (hyperbolic) radius and centre from the dual object. Again we

see that the rôle of the n appearing in the Euclidean expressions is replaced

by e here. Specifically we find the following: the (normalised dual to the) hy-

perbolic circle with hyperbolic centre P, Euclidean radius ρ and hyperbolic

radius d is given by

IC =


ρλ
(ρ

e+(ρ−λ
)P) (5.50)

with d = sinh−(ρ/
√

λ−ρ), from equation 5.25.

- 104 -

Non-Euclidean Techniques

Hyperbolic reflection

A very useful operation in hyperbolic geometry is the notion of hyperbolic

reflection as defined, for example, in [7]. It is extremely easy to calculate the

hyperbolic reflection of a point X in the d-line L in the GA approach. Assum-

ing L is normalised to satisfy L = , we just form LXL, the standard form

of reflecting one object in another. Since LeL = e for any normalised line,

we see that X ′ = LXL is both null and satisfies X ′ · e = −, thus qualifying

it to represent a point. Moreover it is covariantly constructed; under a ro-

tor transformation it just rotates to RX ′R̃ and thus must represent something

physical. It is not hard to show that the point it represents is that found by

moving along a d-line, intersecting L at right angles and passing through X ,

by an equal hyperbolic distance on the other side of the line as X is on the

original side. This is indeed the definition of reflection in this case.

5.2.2 Extension to Higher Dimensions and Other Geometries

All the above transfers seamlessly to three and higher dimensions, in most

cases with no changes at all to the formulæ. This is in contrast to, for instance,

the methods introduced in [7], which rely on standard complex analysis and

so only work in the 2d plane. Furthermore, we can extend all the above anal-

ysis to the case of spherical geometry as well. This involves replacing the role

of e with that of ē, which changes some trigonometric functions and ranges

of applicability, but otherwise most of the above discussion goes through

unchanged.

- 105 -

Non-Euclidean Techniques

5.3 Non-Euclidean Visualisation Methods

A key requirement for visualising objects in the Poincaré disc representation

of hyperbolic geometry is to plot representations of straight lines, known

as d-lines. This section outlines a method developed to draw them using

OpenGL and also presents a generalisation of the method for drawing anal-

ogous ‘d-planes’ in three-dimensional hyperbolic geometry.

5.3.1 NURBs

The d-lines on the Poincaré disc are circular arcs (and straight lines for the

special cases of lines through the origin). OpenGL, the graphics library used

for the implementation, has native support for a class of curves called Non-

uniform Rational B-Splines (NURBS)[52].

NURBS curves are specified using a set of control points, Pi, weights, wi

and a set of normalised basis functions, Ni,k. The curve is given by

C(u) =
∑n

i=wiPiNi,k(u)∑n
i=wiNi,k(u)

The basis functions are defined recursively.

Ni,k(u) =
u− ti

ti+k − ti
Ni,k−(u)+

ti+k+−u
ti+k+− ti+

Ni+,k−(u)

with

Ni, =


 if ti ≤ u≤ ti+

 otherwise

and ti being the elements of the knot vector

U = {t, t, ..., tm}

- 106 -

Non-Euclidean Techniques

P3

P0 P6

P5P1

P2 P4

Figure 5.4: A set of control points and a typical example of an associated NURBS curve.

Note that the endpoints of the curve are tangential to PP and PP and that the

curve is within the convex hull of the points (shaded).

The relation between the number of knots, m+, the degree k of the func-

tions Ni,k and the number of control points, n+  is given by m = n+ k + 

[51, 53].

Clearly a large family of curves can be expressed with suitable choices

of knot vectors, weights and control points leading to great flexibility. All

NURBS curves share some common properties, however, which make them

useful in Computer Graphics. A NURBS curve always stays inside the con-

vex hull of its control points [53] and thus it is straightforward to compute

whether the curve will be displayed at all. Further they are tangential to the

piece-wise linear interpolation of control points at the end-points as illus-

trated in figure 5.4.

- 107 -

Non-Euclidean Techniques

5.3.2 Rendering d-lines

To draw d-lines on the Poincaré disc, we wish to draw circular arcs with

end-points on the boundary circle and erupting normal to it.

A large number of different curves can be created with different control

point numbers, positions and weights. Fortunately there are a number of

standard techniques to generate common curves. One such method of draw-

ing accurate circular arcs[59, 6] is useful to us. We use three control points:

one at the start of the circular arc; one at the origin of the boundary circle;

and one at its end (see figure 5.5). The end-point weights are unity whereas

the weight of the control point at the origin is cosγ, where γ is the angle OA

makes with AB.

Although this procedure does generate a NURBS representation of a true

circular arc the rendering of NURBS on a computer screen invariably in-

volves a piecewise linear approximation and rasterization therefrom. This

approximation can be made arbitrarily accurate to within machine precision

and can certainly be made accurate to sub-pixel levels on any commonly

used display.

Since NURBS are tangential to the piecewise linear interpolation of con-

trol points at either end, it is clear that the curve erupts from the boundary

tangential to the lines OA and OB. Given O is the origin, and the boundary is

centred upon it, these lines are radii of the boundary circle and so clearly are

normals.

This allows us to construct a NURBS representation of any d-line on the

- 108 -

Non-Euclidean Techniques

B

A

O L

γ

w = cos γ

Figure 5.5: NURBS-based rendering of d-lines. Here O is the origin and A and B are the

boundary points of the line L.

Poincaré disc (including diameters) and efficiently draw them using OpenGL.

Calculating properties of d-lines

The last step in drawing our d-lines is now finding where they intersect the

boundary disc, their boundary points. Once we have these points, the drawing

can be performed via our NURBS-based method outlined above.

We can calculate boundary points of d-lines by forming a circle corre-

sponding to the boundary and finding the meet of the line with this circle.

This gives the null-vector representation of the boundary points A and B as

the bivector A∧B as with circle/sphere intersections and the like. We have al-

ready shown that this bivector can be factorised into A and B via the method

of projectors. We finally need to calculate the angle γ which is a trivial exer-

cise in trigonometry.

Figure 5.6 shows the rendering of d-lines in action. Here we have three

d-lines created by rotating and translating the diameter to form a hyperbolic

- 109 -

Non-Euclidean Techniques

Figure 5.6: NURBS rendering of d-lines in action.

triangle (central dark-shaded region). Each of these lines was then reflected

in the other two to form a set of three reflected triangles (outer light-shaded

regions). This operation can be repeated to tile the space.

5.3.3 Rendering ‘d-planes’

Drawing d-lines is interesting in itself but is an already solved problem many

times over. What is interesting is the generality the GA approach provides.

Recalling our discussion of the development of hyperbolic geometry in GA,

at no point did we ever assume only two dimensions. We now have the in-

triguing opportunity to investigate visualisation algorithms in three dimen-

sions.

- 110 -

Non-Euclidean Techniques

We’ll first assume that there is some analogous form to the Poincaré disc

representation for three dimensions. In this case, d-lines can be drawn using

a similar method, this time intersecting them with a boundary sphere to find

the two points of eruption. What would be more interesting is attempting to

find the form for ‘d-planes’.

The method of defining planes in hyperbolic geometry is identical to our

definition in Euclidean geometry; given four points on the d-plane, {x, ...,x},

the plane Φ is defined as

Φ = Fe(x)∧Fe(x)∧Fe(x)∧Fe(x) (5.51)

Note we have incorporated the mapping into null-vectors within the defini-

tion. Any point, p, which lies on the plane Φ satisfies

Fe(p)∧Φ = 

The drawing of d-planes is, however, less straight forward. Firstly we

need to find what shape they are when represented in the Poincaré sphere.

Recall that

Fe(x) =


λ− x
(x+λx−λ

n̄) =
λ

λ− x
F(x)

where F(x) is the mapping function for Euclidean geometry. The factor (λ)/(λ−

x) is always scalar for any vector x and we shall represent it as the function

- 111 -

Non-Euclidean Techniques

Boundary Sphere

Σ

Φ

Figure 5.7: d-planes are caps of the corresponding Euclidean sphere.

s(x). Hence we can re-write equation 5.51 as

Φ =
∧

i=...

s(xi)F(xi) (5.52)

=

∏
i=...

s(xi)

 ∧
i=...

F(xi) (5.53)

= S(x,x,x,x)
∧

i=...

F(xi) (5.54)

We have expressed Φ as the product of some scalar function, S(...) of

the defining points and the Euclidean definition of a sphere. This allows us

to infer that, within the Poincaré sphere, a d-plane passing through points

{x, ...,x} is represented by a sphere passing through those same points.

It has thus been found, without doing any explicit calculations with the

- 112 -

Non-Euclidean Techniques

metric, that d-planes are represented in the Poincaré sphere by portions of

spheres. This neatly shows the analytical simplicity that this approach pro-

vides. Figure 5.7 shows the relation between d-planes and the corresponding

Euclidean sphere.

We can find the meet between the associated Euclidean sphere and the

boundary sphere to give the circle of intersection. Inspecting figure 5.7 we

see that this circle is the edge of the spherical cap corresponding to the d-

plane.

The spherical cap forming the d-plane can be thought of as the intersec-

tion of the half-space containing the origin and bounded by the plane of in-

tersection. The circle of intersection is important since we wish to extract this

plane of intersection efficiently. If we note that the circle is equivalent to the

wedge-product of three points on the circumference we can form the plane

of the circle by simply wedging the circle with n. In summary, the plane of

intersection, P can be found from the d-plane Φ in the following manner.

P = k(Φ∨B)∧n

where B is the Euclidean representation of the boundary sphere and k is some

scale factor.

Bajaj et al[2] provide a method of finding a suitable set of control points

and a NURBS parameter space clipping curve to draw spherical caps from

sphere/half-space intersections. Their approach gives a set of control points

and weights that together draw a little more than one hemisphere. Circular

clipping paths in the parameter space are then used to form spherical caps.

- 113 -

Non-Euclidean Techniques

This method was used to draw the spherical caps in the implementation.

5.4 Chapter summary

In this chapter we explored a method of extending the Conformal Model

of Geometric Algebra to non-Euclidean geometries, specifically hyperbolic

geometry. We outline a method for drawing d-lines and d-planes within a

piece of visualisation software. In addition the power of the GA approach

was demonstrated in that the basic building blocks of the Conformal Model,

a mapping of vectors to null-vector representations and a set of rotors which

act upon these null-vectors, are used in an identical manner to the Euclidean

Conformal Model. This allows problems to be specified and solved in Eu-

clidean geometry once, and by ‘turning a knob’ (replacing the null-vector

mapping and rotors) the problem is solved for hyperbolic geometry. This

is demonstrated in the next chapter, where we extend well known methods

of generating complex-iteration based fractals to arbitrary dimension and in

non-Euclidean geometries.

- 114 -

“For most of my life, one of the persons most
baffled by my own work was myself.”

— Benoı̂t Mandelbrot

Generating Fractals using Geometric
Algebra

6

In this chapter we investigate ways that a number of classical, well know

fractals may be generated using Geometric Algebra. Further we show how

GA can be used to form a natural generalisation to higher dimensions and

well known fractals may be generated using Geometric Algebra. Further

we show how GA can be used to form a natural generalisation to higher

dimensions and non-Euclidean geometries. Some rendering strategies will

also be discussed.

Fractals have always been a popular topic in computer graphics due to

their ability to give rise to great æsthetic beauty from a relatively simple

mathematical description. Generally a fractal is considered to be any geo-

metric object which possesses detail on all scales[5, 41]. That is to say, one

may examine the edge of the object under arbitrary magnification yet still

find it rough and irregular. Many introductions to the subject of fractals and

their creation on computers exist elsewhere[20, 31, 49].

The term fractal was coined by Mandelbrot[40] in 1975, originally from

Generating Fractals using Geometric Algebra

the Latin fractus (broken) intended as a way of referring to their edges which

looks like jagged cracks in some surface. Since many fractals (particularly

those arising from so-caled Iterated Function Systems) have fractional Haus-

dorff dimension[21], some have joked that ‘fractal’ is actually a portmanteau

word formed from ‘fractionally’ and ‘dimensional’.

Below we shall investigate an extension, via GA, of the class of fractals

which is most associated with Mandelbrot – those based on repeated itera-

tion of a complex function. Similar fractals have found applications in a wide

selection of research areas including image compression[4, 3].It is hoped that

the GA-based approach here may also be of use in a similar manner however

in this chapter we concentrate more on the æsthetic nature of the fractals.

6.1 Fractals from Complex Iteration

The classical Mandelbrot and Julia sets (figure 6.1) are well known, even

to laymen, as examples of fractals. They are examples of a form of fractal

known as recurrence or escape-time fractals. Such fractals are generated by it-

erating some complex function and noting how fast it ‘escapes’ to infinity (if

at all).

Both fractals are displayed by mapping points in the complex plane to

pixels in the final image. Usually this mapping to an image pixel location

x = [x y]T from its corresponding complex number, c, is simple.

Definition 6.1 (Representation of the Complex Plane). An image point x =

[x y]T is mapped to a point on the complex plane via that mapping x 7→ I(x)

- 116 -

Generating Fractals using Geometric Algebra

(a) (b)

Figure 6.1: The well known (a) Mandelbrot set with the constant c = .+ .i marked and

(b) the Julia set associated with c.

where

I(x) = [ax+b ay+b]T

and (b,b) specify the origin of the area of interest in the complex plane and

(a,a) specify its scale.

The same complex function generates both the Mandelbrot and Julia sets[8,

16]. It is worth noting that other functions could be used and hence many

other escape-time fractals exist. In this chapter, to save space, we shall only

consider developments from this function.

Definition 6.2. The complex function f (z), c ∈ C, is defined as

f (z) = z+ c.

Definition 6.3 (Iteration). Iteration of a function f (x) is denoted as f (n)(z)

- 117 -

Generating Fractals using Geometric Algebra

where

f (n)(z)≡ f (f (n−)(z))

and f ()(z)≡ z, n ∈ Z+.

6.1.1 The Mandelbrot Set

Definition 6.4 (The Mandelbrot set). The Mandelbrot set, M, is defined as

M=
{

c ∈ C : lim
n→∞

∥∥∥ f (n)()
∥∥∥<∞}

where ‖z‖ ≡ (zz∗)

 .

Lemma 6.5. If
∥∥∥ f (n)(x)

∥∥∥≥  for some n and x then
∥∥∥ f (n)(x)

∥∥∥→∞ as n→∞.

Proof. Suppose
∥∥∥ f (n)(x)

∥∥∥>  and
∥∥∥ f (n)(x)

∥∥∥> ‖c‖. It is clear that∥∥∥ f (n+)(x)
∥∥∥∥∥ f (n)(x)
∥∥ =

∥∥∥ f (n)(x)+ c
∥∥∥∥∥ f (n)(x)

∥∥
and hence ∥∥∥ f (n+)(x)

∥∥∥∥∥ f (n)(x)
∥∥ ≥

∥∥∥ f (n)(x)
∥∥∥−‖c‖∥∥ f (n)(x)
∥∥ =

∥∥∥ f (n)(x)
∥∥∥− ‖c‖∥∥ f (n)(x)

∥∥ .
As
∥∥∥ f (n)(x)

∥∥∥> ‖c‖ and
∥∥∥ f (n)(x)

∥∥∥>  then

∥∥∥ f (n)(x)
∥∥∥− ‖c‖∥∥ f (n)(x)

∥∥ >
∥∥∥ f (n)(x)

∥∥∥− > 

giving ∥∥∥ f (n+)(x)
∥∥∥∥∥ f (n)(x)
∥∥ ≥ 

implying
∥∥∥ f (n)(x)

∥∥∥→∞ as n→∞ as required.

- 118 -

Generating Fractals using Geometric Algebra

1: imax := maximum number of iterations
2: for all points x in image do
3: c := I(x)
4: z := c
5: i := 

6: while zz∗ <  and i < imax do
7: z := z+ c
8: i := i+

9: end while
10: set pixel x to colour i
11: end for

Figure 6.2: Generating the Mandelbrot set

Using lemma 6.5 we may determine if some point x is not in the set as soon

as
∥∥∥ f (n)(x)

∥∥∥≥ . In practise one may have to wait an arbitrarily long time for

this condition to be met and one will never obtain it if x is within the set.

We approximate the set by choosing some maximum number of iterations to

wait before labelling x as being within the set. Our algorithm for generating

an image of the set is shown in algorithm 6.2.

The level of detail of the resulting image being determined by the value of

imax. The image of the Mandelbrot set in figure 6.1a was generated with x =

[x y]T ,x ∈ (−,),y ∈ (−,). In figure 6.1a a colour palette was also chosen

such that colour 0 was black and colour imax was white moving through dark-

green. The brightness of each pixel is therefore some measure of how long it

took to decide whether that point was a member of the set.

- 119 -

Generating Fractals using Geometric Algebra

Require: c = constant
1: imax := maximum number of iterations
2: for all points x in image do
3: z := I(x)
4: i := 

5: while zz∗ <  and i < imax do
6: z := z+ c
7: i := i+

8: end while
9: set pixel x to colour i

10: end for

Figure 6.3: Generating the Julia set

6.1.2 The Julia Set

There are an infinite number of Julia sets; each point on the complex plane

has a corresponding Julia set. The definition of the Julia set is somewhat

similar to that of the Mandelbrot set.

Definition 6.6 (The Julia set). The Julia set, Jc, associated with the complex

number c is given by

Jc =
{

z ∈ C : lim
n→∞

∥∥∥ f (n)(z)
∥∥∥<∞} .

The difference between this and the Mandelbrot set is that there exists

a Julia set associated with each complex number, c which must be chosen

before generating the image. Our algorithm for generating Julia sets is, as

one would expect, similar to that for the Mandelbrot set and is shown in

algorithm 6.3.

Due to their similarity, there exist a number of theorems and conjectures

- 120 -

Generating Fractals using Geometric Algebra

which link the Mandelbrot and Julia sets in some way. For example, if c ∈M

then the Julia set Jc is connected[1]. If c is near the border of M then it is a

Cantor set[1].

6.2 Extending Complex Numbers

In this section we will seek to find a co-ordinate free analogue to the complex

mapping z 7→ z in order to re-cast the fractals above in terms of geometric

operations using GA. We will start by confining ourselves to the plane and

then move into higher dimensions.

Firstly we define a mapping between the complex numbers, C, and the

vector-space of the complex plane, R. Letting {e,e} be some orthonormal

basis for R we can form a natural one-to-one mapping between r ∈ R and

C(r) ∈ C:

Definition 6.7. Given some vector r ∈ R, we can map one-to-one into the

complex plane by forming the complex number

C(r) = (r · e)+(r · e)i.

Here it is clear that e corresponds to the real-axis and e corresponds to

the imaginary axis of the complex plane. By squaring we have

[C(r)] = [(r · e)+(r · e)i]

= (r · e)−(r · e)+(r · e)(r · e)i.

Lemma 6.8. Given some vector r ∈ R representing the complex number C(r), the

mapping r 7→ rer is equivalent to C(r) 7→ [C(r)].

- 121 -

Generating Fractals using Geometric Algebra

Proof. Let r = xe+ ye. Therefore C(r) = x+ yi. It is clear that

rer = (x− y)e+xye

⇒ C(rer) = (x− y)+xyi

= [C(r)]

as required.

Complex addition is identical to vector addition using this representation.

Lemma 6.9. Given vectors r,c ∈ R representing the complex numbers C(r) and

C(c), the mapping r 7→ r+ c is equivalent to C(r) 7→C(r)+C(c).

Proof. Clear by direct substitution.

6.3 Moving to Higher Dimensions

In this section we extend the mapping above to more than two spatial dimen-

sions. This turns out to be remarkably easy since the mapping is co-ordinate

free; we simply remove the constraint that the vectors need be in R.

Definition 6.10. Given a vector r and some unit basis vector e the mapping

r 7→ rer is the geometric analogue of squaring a complex number.

Vector addition can once again be used in place of complex addition.

We may now define generalised Mandelbrot and Julia sets based upon a

new vector recurrence relation.

- 122 -

Generating Fractals using Geometric Algebra

Definition 6.11. The vector analogue of f (r) is

fv(r) = rer+ c

with initial values being defined by a particular fractal.

6.3.1 The Generalised Mandelbrot Set

We can now reformulate the definition of the Mandelbrot set in a co-ordinate

free, dimension agnostic manner. Our new algorithm is shown in figure 6.4

and we may define the generalised Mandelbrot set similarly to the Mandel-

brot set. Referring back to lemma 6.5 we see that the argument we used to ter-

minate the iteration when
∥∥∥ f (n)(x)

∥∥∥≥  still holds when we use ‖x‖=√x · x.

Definition 6.12 (The generalised Mandelbrot set). The generalised Mandel-

brot set, Mk, in Rk is defined as

Mk =
{

c ∈ Rk : lim
n→∞ f (n)

v ()<∞} .
In figure 6.5 vectors lying in three orthogonal planes were used to gen-

erate three images of the three-dimensional Mandelbrot set which are then

displayed mapped onto the original planes. This gives a crude visualisation

method. A better method used to generate pictures of the generalised Julia

set is given below.

The method used was to render a number of slices through the set leaving

transparent the points in each slice which were not a part of the fractal. These

slices were then stacked atop each other to give the impression of a three

dimensional surface as illustrated in figure 6.8.

- 123 -

Generating Fractals using Geometric Algebra

Require: Set I of vectors associated with image points
1: imax := maximum number of iterations
2: e := a unit vector in some preferred direction
3: for all c ∈ I do
4: r := c
5: i := 

6: while r <  and i < imax do
7: r := rer+ c
8: i := i+

9: end while
10: set pixel c to colour i
11: end for

Figure 6.4: Generating the Generalised Mandelbrot set

6.3.2 The Generalised Julia Set

We may generalise the Julia set in an analogous manner and generate it using

algorithm 6.7.

Definition 6.13 (The generalised Julia set). The generalised Julia set, Jc,k, in

Rk which is associated with the vector c ∈ Rk is given by

Jc,k =
{

x ∈ Rk : lim
n→∞ f (n)

v (x)<∞} .
Figure 6.6 was rendered using a crude form of voxel rendering. A number

of 2-dimensional ’slices’ were rendered at varying heights in the set. Each

pixel was coloured, or left transparent, depending on whether it was within

or without the set. Finally, each slice was rendered at an oblique angle. The

resulting ‘stack’ of slices gave an approximation to the true shape. Figure 6.8

illustrates this process.

- 124 -

Generating Fractals using Geometric Algebra

Figure 6.5: Two frames from an animation showing slices through the 3 dimensional Man-

delbrot set.

Figure 6.6: Two frames from an animation showing voxel rendering of 3d Julia sets.

- 125 -

Generating Fractals using Geometric Algebra

Require: Set I of vectors associated with image points
Require: c = constant vector

1: imax := maximum number of iterations
2: e := a unit vector in some preferred direction
3: for all r ∈ I do
4: i := 

5: while r <  and i < imax do
6: r := rer+ c
7: i := i+

8: end while
9: set pixel r to colour i

10: end for

Figure 6.7: Generating the Generalised Julia set

The voxel rendering was adequate to visualise the fractals and confirm

the algorithm works, but a more sophisticated rendering technique is desir-

able which can generate sharper images.

6.3.3 Ray Tracing

In this section we briefly extend the method in [14] of ray-tracing quater-

nionic escape-time fractals to the generalised GA fractals developed above.

Ray-tracing of fractals is achieved by finding some distance function d(x;Ω)

which gives the minimum distance to the fractal parameterised by Ω along

the from the point x. For a Julia fractal the parameter Ω is the constant we

have previously termed c. For a Mandelbrot fractal there is no parameter as

the fractal is unique.

In [14] it was shown, for the complex number form of the escape time

fractals above, that such a distance function at a point z in the complex plane

- 126 -

Generating Fractals using Geometric Algebra

(a) (b) (c)

Figure 6.8: A crude form of voxel rendering. (a) A specific slice through the set. (b) Viewed

from an oblique angle. (c) Stacked with other slices giving the impression of a

three dimensional shape.

dz was bounded by

dz > lim
n→∞ |zn|

a
|z ′n| log |zn|

where zn = zn− + c, |z ′n| = |zn+||z ′n+|, z ′ = . The values of z and c were

dictated by the type of fractal as described above.

It was found that extending the formula to vectors using our analogue

of complex multiplication yielded a suitable distance function although this

has not yet been formally proved. Specifically

d(x;Ω) = lim
n→∞ |xn|

a
|x ′n| log |xn|

where xn = fv(xn−), |x ′n| = |xn+||x ′n+|, x ′ =  and the initial value of xn is

fractal dependant.

Once a distance function (or a lower bound thereof) is available ray trac-

ing becomes possible. Rays of light are traced back from point in the image

plane of an imaginary camera to the scene. For a particular ray the algorithm

to trace the fractal is as follows.

- 127 -

Generating Fractals using Geometric Algebra

Figure 6.9: A ray-traced three-dimensional slice through a five-dimensional Julia set.

1. Set r̂ to be a unit vector pointing along the ray direction.

2. Set the current position, x, to be the camera origin.

3. Calculate a lower bound, d− for the distance from x.

4. If d− is smaller than some tolerance τ exit reporting x as the intersection

point with the fractal.

5. Set x← x+d−r̂.

6. Go to step 3.

Once the intersection point is found the fractal may be lit by examining

intersection points of neighbouring rays and taking the surface orientation

- 128 -

Generating Fractals using Geometric Algebra

to be that of a plane passing through the neighbouring intersection points.

Figure 6.9 shows a slice through a 5d Julia set rendered with this technique.

6.4 Moving to Hyperbolic Geometry

So far all our fractals have been generated using the Euclidean geometry of

the complex plane or n-dimensional flat space. In this section we extend

our algorithm using the non-Euclidean tools given to us by conformal GA.

We firstly need to re-define our complex function in terms of the geometric

operations.

Viewed using Euclidean geometry our function f (r) firstly reflects and

scales the vector r 7→ rer and then translates via the vector c. We know al-

ready how to translate using conformal GA so we turn our attention to the

former operation.

Since we constructed our GA approach to be analogous to the complex

number approach we may borrow the geometric interpretation from com-

plex numbers. In this case the mapping r 7→ r acts to rotate r by arg(r) and

scale it by ‖r‖. We may therefore extend this interpretation into our GA so-

lution as in figure 6.10. We firstly work only in the r∧ e plane to allow our

analogy with complex numbers to hold. If θ is the angle between r and e,

i.e.

θ = cos−

(
r · e
‖r‖

)
,

then the mapping r 7→ rer is initially a rotation in the plane r∧ e by θ fol-

lowed by a dilation by a factor of (r)

 which may be expressed in terms of

- 129 -

Generating Fractals using Geometric Algebra

e1

e2

z

θ

2θ

ze1z

O

Figure 6.10: The geometrical interpretation of r 7→ rer as a rotation followed by a dilation.

rotors and dilators using their geometric definitions above.

Definition 6.14. The conformal GA analogue of r 7→ rer is given by

F(rer) = DrRr F(r) R̃rD̃r

where

Rr = cos
θ


+Psin

θ


, P =

(r∧ e)
‖r‖

and θ is defined above. The dilator Dr acts to dilate about the origin by a

factor of ‖r‖. In Euclidean geometry it is given by

Dr = exp
(
− log(‖r‖)


eē
)
.

The second part of f (r) is a translation by c. A translator in non-Euclidean

geometries is only defined as translating the origin to a given point so we

- 130 -

Generating Fractals using Geometric Algebra

must be careful about the precise operations we perform. The GA analogue

of the complex mapping r 7→ r+ c is thus given by the following steps:

1. Translate r to the origin by applying the appropriate geometry-specific

translator represented by τ(−r);

2. Translate the origin to c by applying the translator τ(c);

3. ‘Undo’ step 1 by applying the translator τ(r).

where τ(r) is a function which will give the appropriate translator for our

chosen geometry. In Euclidean geometry τ(r) = + nr
 and in non-Euclidean

geometry

τ(r) =
√

λ− r
(λ+ ēr)

with λ being defined as in the discussion of non-Euclidean geometries above.

A little thought will reveal that this is equivalent to translating c by the

translator + nr
 . We may therefore define our full conformal GA analogue of

f (r).

Definition 6.15. The conformal GA analogue of f (r) = rer+ c is given by

f (r) = F−(TrF(c)T̃r)

where

Tr = τ(F−(DrRr F(r) R̃rD̃r))

Our algorithm for generating the generalised Mandelbrot and Julia sets

is now identical except we substitute our new, geometric, definition of f (r)

- 131 -

Generating Fractals using Geometric Algebra

(a)

(b)

Figure 6.11: The non-Euclidean analogue of the (a) Mandelbrot set with the constant c =

.e+.e marked and (b) the Julia set associated with c.

- 132 -

Generating Fractals using Geometric Algebra

and choose τ(r) and the form of Dr to reflect our chosen geometry. Usefully

pure-rotation rotors remain the same in each geometry so no modification of

them is necessary. Figure 6.11 shows a hyperbolic Mandelbrot and Julia set

on the Poincaré disc generated with this method.

6.4.1 The Hyperbolic Mandelbrot Set

The hyperbolic Mandelbrot set is shown in figure 6.11a and is generated us-

ing algorithm 6.4, substituting step 7 for one performing the iteration out-

lined above.

6.4.2 The Hyperbolic Julia Set

A particular hyperbolic Julia set is shown in figures 6.11b, 6.12 and 6.13. Once

again, it is generated using algorithm 6.7 substituting step 6. The two related

montage figures show the same path across the underlying Mandelbrot set

but with two differing methods of representing x 7→ x+ c. It is interesting

to note that not only are the fractals different but they have different overall

shape and behaviour. It is also worth remarking that, geometrically, there is

no preferred form of the translation representation and so both these mon-

tages are equally valid images of hyperbolic Julia sets. This leads to the in-

teresting conclusion that, whilst there is only one family of Euclidean Julia

sets, for transitionally non-commuting geometries there are two.

It is worth noting that the code to generate the Euclidean fractals in fig-

ure 6.1 is identical to that used to generate 6.12 except for the definition of

- 133 -

Generating Fractals using Geometric Algebra

Figure 6.12: A montage of hyperbolic Julia sets where the constant c moves from −.e−
.e to .e+.e. In this figure translation x 7→ x+c is performed by apply-

ing a translation rotor corresponding to c to the vector x.

- 134 -

Generating Fractals using Geometric Algebra

Figure 6.13: A montage of hyperbolic Julia sets where the constant c moves from −.e−
.e to .e+.e. In this figure translation x 7→ x+c is performed by apply-

ing a translation rotor corresponding to x to the vector c.

- 135 -

Generating Fractals using Geometric Algebra

translators and dilators. We can replace the Euclidean form with those given

in section 5.2 and re-cast the fractals into hyperbolic geometry. The fact that

conformal GA algorithms developed using Euclidean geometry may so read-

ily be applied to non-Euclidean geometries by simply changing the rotor def-

initions neatly indicates the power of the conformal GA approach.

- 136 -

“There is no branch of mathematics, however
abstract, which may not someday be applied
to the phenomena of the real world.”

— Nicolai Lobachevsky

Rotors as Exponentiated Bivectors

7

In this chapter we shall consider common representations for pure-rotation

rotors, translators and combinations of both. We shall term rotors which rep-

resent rotations and translations general displacement rotors. We will not ex-

plicitly deal with other rotors, such as dilation rotors, but similar techniques

may be useful for their investigation. If we examine the form of the rotors

presented in chapter 2 we see that all of them have a common form; they

are all exponentiated bivectors. Rotations are generated by exponentiating

bivectors with no e or ē-like components in them. We term objects with no

contribution from e and ē spatial. We may postulate that all general displace-

ment rotors can be expressed as

R = exp(B)

where B is the sum of two bivectors, one spatial and the other formed from

the outer product of n with a spatial vector. Our justification is that those

closely match the form of the bivectors which generate rotation and transla-

Rotors as Exponentiated Bivectors

tion rotors respectively. The effect of this is to separate the basis bivectors of

B into one with components of the form ei ∧ e j and one with components of

the form ei ∧ e and ei ∧ ē.

The representation of rotors as generalised exponentials was explored by

Rosenhahn et al.[57, 56, 55]. In this publication screw motions as the com-

muting product of a rotation and a translation out of the plane of rotation

were viewed as a single exponentiated bivector. The set of screw-generating

bivectors occupied a convenient sub-space of all bivectors. In this chapter

we extend their work to exponentiate a wider class of bivector and, crucially,

provide a closed form for the inverse operation. Later we show how this

wider representation can be used to move to and from a ×  matrix rep-

resentation of rotation and translation allowing use to ‘glue’ our GS-based

methods to hardware especially designed for such matrix operations.

Notationally, we assume all general displacement rotors can be formed

by exponentiating a bivector of the form B = ab+ cn where a, b and c are

independent of n, i.e. if n ∈ A(m+ ,) then {a,b,c} ∈ Rm. It is clear that the

set of all B is some linear sub-space of all the bivectors.

We now suppose that we may interpolate rotors by defining some func-

tion `(R) which acts upon rotors to give the generating bivector element. We

then perform direct interpolation of these generators. We postulate that di-

rect interpolation of these bivectors, as in the reformulation of quaternionic

interpolation in section 2.1.3, will give some smooth interpolation between

- 138 -

Rotors as Exponentiated Bivectors

the displacements. It is therefore a defining property of `(R) that

R≡ exp(`(R)) (7.1)

and so `(R) may be considered as to act as a logarithm-like function in this

context. It is worth noting that `(R) does not possess all the properties usu-

ally associated with logarithms, notably, since exp(A)exp(B) is not generally

equal to exp(B)exp(A) in non-commuting algebras, `(exp(A)exp(B)) cannot

be equal to A+B except in special cases.

To avoid the the risk of assigning more properties to `(R) than we have

shown, we shall resist the temptation to denote the function log(R). The most

obvious property of log(·) that `(·) does not possess is log(AB) = log(A) +

log(B). This is clear since the geometric product is not commutative in gen-

eral whereas addition is.

7.1 Form of exp(B) in Euclidean space

Definition 7.1 (Spatial elements). An element x in the conformal model is

termed ‘spatial’ if

x · e = x · ē = .

Lemma 7.2. If B is of the form B = φP+ tn where t is a spatial vector, φ is some

scalar and P is a spatial bivector where P =− then, for any k ∈ Z+,

Bk = φ
kPk +α

()
k φPtn+α

()
k φ

PtnP+α
()
k φtnP+α

()
k tn

with the following recurrence relations for α
(·)
k , k > 

- 139 -

Rotors as Exponentiated Bivectors

α
()
k = −φα

()
k− α

()
k = α

()
k−

α
()
k = α

()
k− α

()
k = φk−Pk−−φα

()
k−

with α
()
 = α

()
 = α

()
 = α

()
 = .

Proof. Firstly note that the theorem is provable by direct substitution for the

cases k =  and k = . We thereafter seek a proof by induction.

Assuming the expression for Bk− is correct, we post-multiply by φP+ tn

to obtain

Bk = φ
kPk +α

()
k−φ

PtnP+α
()
k−φ

PtnP+α
()
k−φ

tnP+

α
()
k−φtnP+φ

k−Pk−tn+α
()
k−φP(tn)+α

()
k−φ

PtnPtn+

α
()
k−φtnPtn+α

()
k−(tn)



Substituting P = −, (tn) = −tnt =  and noting that nPt = −Ptn leads

to tnPtn =−tPtn = 

Bk = φ
kPk +α

()
k−φ

PtnP−α
()
k−φ

Ptn−α
()
k−φ

tn+

α
()
k−φtnP+φ

k−Pk−tn

= φ
kPk −(α

()
k−φ

)φPtn+α
()
k−φ

PtnP+

α
()
k−φtnP+(φk−Pk−−α

()
k−φ

)tn

Equating like coefficients we obtain the required recurrence relations.

Lemma 7.3. Assuming the form of B given in lemma 7.2, for k ∈ Z+,

Bk = (−)k
φ
k − k(−)k

φ
k−[tnP+Ptn]

- 140 -

Rotors as Exponentiated Bivectors

and

Bk+ = (−)k
φ
k+P+ kφ

k(−)k[tn−PtnP]+ (−)k
φ
ktn

Proof. Starting from α
(.)
 =  it is clear that the recurrence relations above

imply that α
()
k = α

()
k =  ∀ k ≥ . Substituting α

()
k = α

()
k−, that the relation

for α
()
k is satisfied by

α
()
k =


k
(φP)k− k even,

k+
 (φP)k− k odd.

When substituted into the expression for Bk, we obtain the result stated above.

Theorem 7.4. If B is a bivector of the form given in lemma 7.2 then, defining t‖ as

the component of t lying in the plane of P and t⊥ = t − t‖,

exp(B) = [cos(φ)+ sin(φ)P] [+ t⊥n]+ sinc(φ)t‖n

Proof. Consider the power series expansion of exp(B),

exp(B) =
∞∑

k=

Bk

k!
=

∞∑
k=

[
Bk

(k)!
+

Bk+

(k+)!

]

Substituting the expansion for Bk and Bk+ from lemma 7.3

exp(B) =
∞∑

k=

[
(−)kφk

(k)!
− k

(−)kφk−

(k)!
(tnP+Ptn)

]

+

∞∑
k=

[
(−)kφk

(k+)!
(φP+ tn)+ k

(−)kφk

(k+)!
(tn−PtnP)

]
We now substitute the following power-series representations

- 141 -

Rotors as Exponentiated Bivectors

cos(z) =
∑∞

k=
(−)kzk

(k)! sinc(z) =
∑∞

k=
(−)kzk

(k+)!

−zsin(z) =
∑∞

k= k (−)kzk

(k)! cos(z)− sinc(z) =
∑∞

k= k (−)kzk

(k+)!

to obtain

exp(B) =cosφ+ sin(φ)



(tnP+Ptn)+ sinc(φ)(φP+ tn)

+



[cos(φ)− sinc(φ)] (tn−PtnP)

By considering parallel and perpendicular components of t with respect to

the plane of P we can verify that tnP+Ptn = Pt⊥n and PtnP = (t‖−t⊥)n hence

exp(B) =cosφ+ sin(φ)Pt⊥n+ sinc(φ)(φP+ tn)+ [cos(φ)− sinc(φ)] t⊥n

=cos(φ) [+ t⊥n]+ sin(φ)P [+ t⊥n]+ sinc(φ)t‖n

=[cos(φ)+ sin(φ)P] [+ t⊥n]+ sinc(φ)t‖n

as required.

Definition 7.5. A screw is a rotor whose action is to rotate by φ in the plane of

P whilst translating along a vector a perpendicular to the plane of P. It may

therefore be defined by the rotor

τ(φ,P,a) =
[

cos
(

φ



)
+ sin

(
φ



)
P
][

+
na


]
where φ is a scalar, P is a spatial bivector normalised such that P =− and a

is some vector satisfying a ·n = a ·P = .

- 142 -

Rotors as Exponentiated Bivectors

Lemma 7.6. The exponentiation function may be re-expressed using a screw

exp
(

φ


P+

tn


)
=

[
+ sinc

(
φ



)
t‖n


τ̃(φ,P,−t⊥)
]

τ(φ,P,−t⊥)

Proof. We firstly substitute our definition of a screw into our form for the

exponential

exp
(

φ


P+

tn


)
= τ(φ,P,−t⊥)+ sinc

(
φ



)
t‖n

. (7.2)

Noting that, since screws are rotors, τ(·)τ̃(·) = , it is then clear that the re-

quired expression is equivalent to this form of the exponential.

Lemma 7.7. The expression

+ sinc
(

φ



)
t‖n


τ̃(φ,P,−t⊥)

is a rotor which acts to translate along a vector t ′‖ given by

t ′‖ =−sinc
(

φ



)
t‖

(
cos
(

φ



)
− sin

(
φ



)
P
)

Proof. The expression above may be obtained by substituting for the screw in

the initial expression and simplifying. It is clearly a vector since multiplying

t‖ on the left by P is just a rotation by π/ in the plane of P.

We have now developed the required theories and tools to discuss the

action of the rotor

R = exp
(

φ


P+

tn


)
It translates along a vector t⊥ being the component of t which does not lie in

the plane of P, rotates by φ in the plane of P and finally translates along t ′‖

- 143 -

Rotors as Exponentiated Bivectors

which is given by

t ′‖ =−sinc
(

φ



)
t‖

(
cos
(

φ



)
− sin

(
φ



)
P
)

which is the component of t lying in the plane of P, rotated by φ/ in that

plane.

7.2 Checking exp(B) is a rotor

It is sufficient to check that exp(B) satisfies the following properties of a rotor

R.

RR̃ = , RnR̃ = n

Theorem 7.8. If R = exp(B) and B is a bivector of the form given in lemma 7.2 then

RR̃ = .

Proof. Consider the screw form of exp(B) from equation 7.2

R = exp(B) = τ(φ,P,−t⊥)+ sinc
(

φ



)
t‖n


and make use of our knowledge that τ(φ,P,−t⊥) is a rotor. Hence,

RR̃ = τ(φ,P,−t⊥)τ̃(φ,P,−t⊥)+ sinc
(

φ



)
t‖nt‖


+ sinc
(

φ



)[
τ(φ,P,−t⊥)nt‖+ t‖nτ̃(φ,P,−t⊥)

]
= ++ sinc

(
φ



)[
T + T̃

]
where T = τ(φ,P,−t⊥)nt‖.

Looking at the definition of τ(φ,P,−t⊥), it is clear that it has only scalar,

bivector and 4-vector components, with the bivector components being par-

allel to P or t⊥n and the 4-vector components being parallel to Pt⊥n. When

- 144 -

Rotors as Exponentiated Bivectors

post-multiplied by nt‖ to form T , the 4-vector component goes to zero (since

n = ) as does the bivector component parallel to t⊥n and so we are left with

T having only components parallel to nt‖ and Pnt‖. We may now express T

as

T = αnt‖+βPnt‖

where α and β are suitably valued scalars. Hence

T + T̃ = α
[
nt‖+ t‖n

]
+β
[
Pnt‖+ t‖nP̃

]
= +βn

[
Pt‖− t‖P̃

]
By considering two basis vectors of P, a and b, such that P = ab, a · b = 

and resolving t‖ in terms of a and b it is easy to show that Pt‖− t‖P̃ =  and

hence T + T̃ =  giving the required result.

Theorem 7.9. If R = exp(B) and B is a bivector of the form given in lemma 7.2 then

RnR̃ = n.

Proof. Again using the screw form of R from equation 7.2 we have

Rn = τ(φ,P,−t⊥)n+ sinc
(

φ



)
t‖n



= τ(φ,P,−t⊥)n+

Defining the rotation rotor R(P,φ) as

R(P,φ) = cos
(

φ



)
+ sin

(
φ



)
P

and substituting for the definition of the screw above gives

Rn = R(P,φ)n

- 145 -

Rotors as Exponentiated Bivectors

Similarly, again using the screw form of R we have

nR = nτ(φ,P,−t⊥)+ sinc
(

φ



)
nt‖n


= nτ(φ,P,−t⊥)+

= nR(P,φ)

(
+

tn


)
= R(P,φ)n

(
+

tn


)
= R(P,φ)n

We now have that Rn = nR and hence, using RR̃ =  from the previous theo-

rem, RnR̃ = nRR̃ = n.

7.3 Method for evaluating `(R)

We have found a form for exp(B) given that B is in a particular form. Now

we seek a method to take an arbitrary displacement rotor R = exp(B) and

re-construct the original B. Should there exist a B for all possible R, we will

show that our initial assumption that all displacement rotors can be formed

from a single exponentiated bivector of special form is valid. We shall term

this initial bivector the generator rotor (to draw a parallel with Lie algebras).

We can obtain the following identities for B = (φ/)P+ tn/ by simply

considering the grade of each component of the exponential

〈R〉 = cos
(

φ



)
〈R〉 = sin

(
φ



)
P+ cos

(
φ



)
t⊥n+ sinc

(
φ



)
t‖n

〈R〉 = sin
(

φ



)
Pt⊥n

- 146 -

Rotors as Exponentiated Bivectors

It is straightforward to reconstruct φ, t⊥ and t‖ from these components

by partitioning a rotor as above. Once we have a method which gives the

generator B for any displacement rotor R, we have validated our assumption.

Theorem 7.10. The inverse-exponential function `(R) is given by

`(R) = ab+ c⊥n+ c‖n

where

‖ab‖ =
√

|(ab)|= cos−(〈R〉)

ab =
(〈R〉 n) · e
sinc(‖ab‖)

c⊥n = −
ab〈R〉

‖ab‖ sinc(‖ab‖)

c‖n = −
ab〈ab〈R〉〉
‖ab‖ sinc(‖ab‖)

Proof. It is clear from the above that the form of ‖ab‖ is correct. We thus

proceed to show the remaining equations to be true

〈R〉 = cos(‖ab‖)c⊥n+ sinc(‖ab‖)
[
ab+ c‖n

]
〈R〉 n = sinc(‖ab‖)abn

(〈R〉 n) · e = sinc(‖ab‖)ab

therefore the relation for ab is correct.

〈R〉 = sinc(‖ab‖)abc⊥n

ab〈R〉 = −‖ab‖ sinc(‖ab‖)c⊥n

- 147 -

Rotors as Exponentiated Bivectors

and hence the relation for c⊥n is correct.

〈R〉 = cos(‖ab‖)c⊥n+ sinc(‖ab‖)
[
ab+ c‖n

]
ab〈R〉 = cos(‖ab‖)abc⊥n+ sinc(‖ab‖)

[
abc‖n−‖ab‖

]
〈ab〈R〉〉 = sinc(‖ab‖)abc‖n

and so the relation for c‖n is correct.

7.4 Mapping Generators to Matrices

Although the representation of a rotor as an exponentiated generator bivec-

tor is convenient mathematically and useful for smooth pose interpolation

and mesh deformation, as will be presented later, it is somewhat cumber-

some to integrate into an existing graphical pipeline. Most graphics hard-

ware and nearly all graphics APIs represent rigid-body transformations as

× matrices. Specifically, given the projective mapping from a three-dimensional

vector x to its homogeneous representation,

x 7→
 wx

w


where w is some arbitrary non-zero scalar, a rigid body transform can be

represented as  wx

w

 7→ R

 wx

w


and

R=

 R t

 

 .
- 148 -

Rotors as Exponentiated Bivectors

Here R is an orthonormal × rotation matrix and t is some translation vec-

tor.

Due to the common nature of such a representation, it would be advan-

tageous to have some method of mapping between the conveniently linear

space of generators to the non-linear space of these ×  matrices. In this

section we shall develop such a method. Note that we shall only be working

in three dimensions due to the limitations of the matrix representation rather

than the exponentiated generator representation.

Recall that we represent a rotor, R, as R= exp(B) where B is a bivector. The

generator bivector, B, may itself be parametrised in terms of a spatial bivector

P which is normalised such that P =−, a scalar φ and a spacial vector t as in

lemma 7.2. Letting P = pe+ pe+ pe and t = te+ te+ te we may

represent B via the vector b

b = [p p p t t t]T .

Using this generator representation is useful since any vector b ∈ R will

represent a valid generator and hence a valid rotor.

It is also worth noting that this method of converting from a matrix repre-

sentation to a generator is ambiguous inasmuch as the matrix representation

cannot uniquely represent rotations by more than π.

7.4.1 Method

We shall attempt to represent the application of a rotor associated with a

generator to a point by defining an appropriate linear function h(·).

- 149 -

Rotors as Exponentiated Bivectors

Definition 7.11. The function h(φ,P, t, p) is defined as

h(φ,P, t, p) = F−
(
RF(p)R̃

)
where R = exp(B), B = φP+ tn and P,φ and t are as defined in lemma 7.2. F(·)

is the mapping of vectors to their null-vector representation.

It is easy, if somewhat tedious, to show by direct expansion and compar-

ison of terms that an expression for h(·) which matches the definition above

is

h(φ,P, t, p) = cp− sPpP− sc [pP−Pp]

+

[
kc+


t +

kc−


PtP−

sk

(tP−Pt)

]
(7.3)

where s = sin(φ/), c = cos(φ/) and k = sinc(φ/).

Definition 7.12. The function v(x) maps the m-dimensional vector x to its

column-vector representation

v(x) =



x · e

x · e
...

x · em


.

It is clear by inspection that the function h(·) is constant with respect to

p added to a function linear in p. We can therefore find some ×  matrix

H(φ,P, t), such that

eTH(φ,P, t)

 v(p)



= h(φ,P, t, p) (7.4)

- 150 -

Rotors as Exponentiated Bivectors

where eT = [e e e].

Comparing the action of H and the form of [v(p) ]T to the discussion

of ×  transformation matrices above, it is easy to see that the mapping

p 7→ h(φ,P, t, p,) is equivalent to v(p)



 7→ R

 v(p)




with

R=

 H

   

 .
Mapping a given generator parametrised in terms of φ,P and t therefore

requires finding a closed form of H given h(·).

7.4.2 Finding H from a generator

In this section we shall seek a method of directly obtaining an appropriate

form for H which represents the same action as a particular generator. Ide-

ally this mapping should be simple enough to fit inside the programmable

portions of a Graphics Processing Unit, allowing for hardware accelerated

generator-based algorithms to be implemented on consumer-level graphics

hardware.

Definition 7.13. Define the resolution of a bivector A onto the orthonormal

basis set {e,e, · · · } as the set of scalars {a,a, · · · } where

A = ae+ae+ · · · .

- 151 -

Rotors as Exponentiated Bivectors

Definition 7.14. Define the resolution of a vector b onto the orthonormal

basis set {e,e, · · · } as the set of scalars {b,b, · · · } where

b = be+be+ · · · .

Definition 7.15. Define the function f(A,b), with A a three-dimensional bivec-

tor and b a three-dimensional vector, as

f(A,b) =


 a −a

−a  a

a −a 




b

b

b

 .

Definition 7.16. Define the function f(A,b), with A a three-dimensional bivec-

tor and b a three-dimensional vector, as

f(A,b) = (ab+ab+ab).

Corollary 7.17. Given A a three-dimensional bivector and b a three-dimensional

vector

bA−Ab =−[e e e]f(A,b).

Proof. With the definitions for resolving A and b above one can show by di-

rect expansion over an orthonormal basis that

Ab = f(A,b) e+[e e e]f(A,b)

and

bA = f(A,b) e−[e e e]f(A,b)

The desired result is then clear by substitution.

- 152 -

Rotors as Exponentiated Bivectors

Definition 7.18. Define M(A) to be a function of a three-dimensional bivec-

tor A,

M(A) =


 a −a

−a  a

a −a 

 .
Corollary 7.19. Equation 7.3 is equivalent to

h(φ,P, t, p,λ) = c eT v(p)− sPpP+sc eT M(P)v(p)

+λ

[
kc+


eT v(t)+

kc−


PtP+ sk eT M(P)v(t)

]
.

Proof. Direct substitution and application of lemma 7.17.

Definition 7.20. Define M(A) to be a function of a three-dimensional bivec-

tor A,

M(A) =


a−a+a −aa −aa

−aa a+a−a −aa

−aa −aa −a+a+a

 .
Corollary 7.21. Given a three-dimensional bivector A and a three-dimensional vec-

tor b,

AbA = eT M(A)v(b).

Proof. Clear by substitution and expansion.

Lemma 7.22. An equivalent form for h(·) as given in equation 7.3 is

h(φ,P, t, p,λ) = eT [c v(p)− s M(P)v(p)+sc M(P)v(p)]

+λeT
[

kc+


v(t)+

kc−


M(P)v(t)+ sk M(P)v(t)

]
.

- 153 -

Rotors as Exponentiated Bivectors

Proof. Substitute the above corollaries into h(φ,P, t, p,λ) to obtain

h(φ,P, t, p,λ) = c eT v(p)− s eT M(P)v(p)+sc eT M(P)v(p)

+λ

[
kc+


eT v(t)+

kc−


eT M(P)v(t)+ sk eT M(P)v(t)

]
and rearrange.

Definition 7.23. Define M(A) to be a function of a three-dimensional bivec-

tor A,

M(A) =
kc+


I+

kc−


M(A)+ sk M(A)

where I is the × identity matrix.

Theorem 7.24. The ×  matrix H may be found directly from a generator B =

φP+ tn as

H = [cI− s M(P)+sc M(P) ; M(P)v(t)]

where I is the × identity matrix.

Proof. Clear by comparison of lemma 7.22 with definition 7.23.

The required × matrix R can now easily be found from H.

7.4.3 Mapping H to the corresponding generator

In this section we develop a method to reconstruct a generator given only the

transformation matrix. Note that this method can only reconstruct a genera-

tor up to a rotation of π due to deficiencies in the matrix representation.

- 154 -

Rotors as Exponentiated Bivectors

Definition 7.25. Define the two sub-matrices of H, R and t

H = [R ; t]

as

R = cI− s M(P)+sc M(P) (7.5)

and

t = M(P)v(t). (7.6)

Both R and t may easily be extracted from R. Given the anti-symmetric

and symmetric nature of M(P) and M(P) it is clear that

R+RT =  [cI− s M(P)]

R−RT = sc M(P).

Definition 7.26. The function α(A,B) estimates s and c and returns s
c given

the constraints

B = cI− sA

and

c+ s = .

There are four constraints in two unknowns and hence the system is over-

constrained – in practice one would use a linear-least-squares estimator.

If sc 6=  then we may recover P by extracting elements of R−RT and

renormalising. If sc =  then either s =  or c = . If s =  it implies φ = nπ,

c =  and therefore R+RT = I and we are free to choose P as we wish. If

- 155 -

Rotors as Exponentiated Bivectors

1: Extract the sub-matrices R and t from R.
2: K := R−RT .
3: L := R+RT .
4: k := K

+K
+K



5: if k 6=  then
6: P := √

k

(
K

e+K
e−K

e
)

7: ψ := tan−
[
α
(
M(P), L

)]
8: else
9: if L = I then

10: P := e
11: ψ := 

12: else
13: P := M−



(

L
)

14: ψ := π



15: end if
16: end if
17: t := v−

(
[M(P)]

−)
18: B := ψP+ tn

Figure 7.1: Reconstruction of a generator from a × transformation matrix.

c =  then s =± and R+RT =−M(P). We can then extract P from M(P).

The sign of s, in this case, is arbitrary.

Assuming we have estimates for s, k and c from above, we may recon-

struct M(P) directly from t and hence recover

v(t) = M−
 (P)t.

Finally, given s, c and k, an estimate for φ can be made. This algorithm is

outlined explicitly in figure 7.1.

In practice we might wish to use LU decomposition or similar rather than

computing the matrix inverse if we deal with spaces with higher dimension-

- 156 -

Rotors as Exponentiated Bivectors

ality. Similarly one would calculate the inverse tangent in terms of s and c

directly so as to ensure the result for the correct quadrant is returned.

7.5 Chapter summary

In this chapter we investigated a key feature of the conformal model – all

rotors representing conformal transformations are formed by exponentiat-

ing bivectors. We found a closed form for the exponentiation of bivectors

which results in rotors representing rigid body transforms and found that

such bivectors lie, for 3d transformations, in a linear 6d subspace of the 5d

bivectors. We also, importantly, found a method of converting back from

a rotor into the corresponding bivector. Finally we used these relations to

find algorithms for converting directly between ×  rotations/translation

matrices and the 6d generators.

- 157 -

“I can accept anything, except what seems to
be the easiest for most people: the half-way,
the almost, the just-about, the in-between.”

— Ayn Rand

Rotor Interpolation

8

8.1 Interpolation via Generators

We have shown that any displacement of Euclidean geometry may be mapped

smoothly onto a linear subspace of the bivectors. This immediately sug-

gests applications to smooth interpolation of displacements. Consider a set

of poses we wish to interpolate, {P,P, ...,Pn}, and a set of rotors which trans-

form some origin pose to these target poses, {R,R, ...,Rn}. We may map

these rotors onto the set of bivectors {`(R), `(R), ..., `(Rn)} which are simply

points in some linear subspace of the bivectors. We may now choose any in-

terpolation of these bivectors which lies in this space and for any bivector on

the interpolant, B ′
λ
, we can compute a pose, exp(B ′

λ
). We believe this method

is more elegant and conceptually simpler than many other approaches based

on Lie algebras [24, 44, 48, 9].

Another interpolation scheme is to have the poses defined by a set of

chained rotors so that {P,P, ...,Pn} is represented by

Rotor Interpolation

R1

∆R2
∆R1

Origin

R2 = ∆R1R1

R3 = ∆R2∆R1R1

Figure 8.1: Rotors used to piece-wise linearly interpolate between key-rotors.

{R,∆RR,∆RR, ...,∆RnRn}

where Ri = ∆Ri−Ri− as in figure 8.1. Using this scheme the interpola-

tion between pose Ri and Ri+ involves forming the rotor Ri,λ = exp(Bi,λ)Ri−

where Bi,λ = λ`(∆Ri−) and λ varies between  and  giving Ri, = Ri− and

Ri, = Ri.

We now investigate two interpolation schemes which interpolate through

target poses, ensuring that each pose is passed through. This kind of interpo-

lation is often required for key-frame animation techniques. The first form of

interpolation is piece-wise linear interpolation of the relative rotors (the lat-

ter case above). The second is direct quadratic interpolation of the bivectors

representing the final poses (the former case).

8.1.1 Piece-wise linear interpolation

Direct piece-wise linear interpolation of the set of bivectors is one of the sim-

plest interpolation schemes we can consider. Consider the example shown

in figure 8.1. Here there are three rotors to be interpolated. We firstly find

- 159 -

Rotor Interpolation

rotors, ∆Rn, which take us from rotor Rn to the next in the interpolation se-

quence, Rn+.

Rn+ = (∆Rn)Rn

∆Rn = Rn+R̃n.

We then find the bivector, ∆Bn which generates ∆Rn = exp(∆Bn). Finally

we form a rotor interpolating between Rn and Rn+

Rn,λ = exp(λ∆Bn)Rn

where λ is in the range [,] and Rn, = Rn and Rn, = Rn+. Clearly this inter-

polation scheme changes abruptly at interpolation points, something which

is reflected in the resulting interpolation as shown in figure 8.2a.

8.1.2 Quadratic interpolation

Another simple form for interpolation is the quadratic interpolation where

a quadratic is fitted through three interpolation points, {B,B,B} with an

interpolation parameter varying in the range (−,+)

B ′
λ
=

(
B+B


−B

)
λ
+

B−B


λ+B

giving

B ′− = B, B ′ = B and B ′+ = B

This interpolation varies smoothly through B and is reflected in the final

interpolation, as shown in figure 8.2b. Extensions to the quadratic interpo-

lation for more than three interpolation points, such as smoothed quadratic

interpolation [12], are readily available.

- 160 -

Rotor Interpolation

Figure 8.2: Examples of a) piece-wise linear and b) quadratic interpolation for three repre-

sentative poses.

- 161 -

Rotor Interpolation

8.1.3 Alternate methods

It is worth noting that the methods described above used either a direct in-

terpolation of the bivector `(R) corresponding to a rotor R, as in the quadratic

interpolation example, or by interpolating the relative rotors which take one

frame to another, as in the piecewise linear example. Either method could

have used either convention when choosing the bivectors to interpolate. Gen-

erally it is not clear which is the best approach and choosing that which fits

a particular application may be the wisest course of action.

8.1.4 Interpolation of dilations

In certain circumstances it is desirable to add in the ability to interpolate

dilations. This is investigated in [11] and is included here for completeness.

In [11] it is shown that this can be done by extending the form of the bivector,

B, which we exponentiate as follows

B = φP+ tn+ωN

where N = eē. This bivector form is now sufficiently general [11] to be able

to represent dilations as well. In this case obtaining the exponentiation and

logarithm function is somewhat involved [11]. We obtain finally that

exp(φP+ tn+ωN)

= (cos(φ)+ sin(φ)P)(cosh(ω)+ sinh(ω)N + sinhc(ω)tJ⊥n)

+(ω+φ)−[−ωsin(φ)cosh(ω)+φcos(φ)sinh(ω)]P

+(ω+φ)−[ωcos(φ)sinh(ω)+φsin(φ)cosh(ω)]t‖n

- 162 -

Rotor Interpolation

where sinhc(ω) = ω− sinh(ω). Note that this expression reduces to the orig-

inal form for exp(B) when ω = , as one would expect.

It is relatively easy to use the above expansion to derive a logarithm-like

inverse function.

If we let R = exp(B) then we may recreate B from R using the method

presented below. Here we use 〈R|ei〉 to represent the component of R parallel

to ei, i.e. 〈R|N〉 = 〈R|e〉 in 3-dimensions. We also use 〈R〉i to represent the

i-th grade part of R and S(X) to represent the ‘spatial’ portion of X (i.e. those

components not parallel to e and ē).

ω = tanh−
(
〈R|N〉
〈R|〉

)
φ = cos−

(
〈R|N〉

sinh(ω)

)
P =

S(〈R〉)
sin(φ)cosh(ω)

t⊥ = −
〈R〉−sin(φ)sinh(ω)PN

sin(φ)sinhc(ω)

(Pn̄


)
t = tJ‖+ t⊥

W = 〈R〉− cos(φ)sinh(ω)N − sin(φ)cosh(ω)P

−cos(φ)sinhc(ω)tJ⊥n

X = −ωsin(φ)cosh(ω)+φcos(φ)sinh(ω)

Z = ωcos(φ)sinh(ω)+φsin(φ)cosh(ω)

tJ‖ = (−XP+Z)
sin(φ)cosh(ω)+cos(φ)sinh(ω)

W

8.2 Form of the Interpolation

In this section we derive a clearer picture of the precise form of a simple

linear interpolation between two frames in order to relate the interpolation

to existing methods used in mechanics and robotics. We will consider the

method used above whereby the rotor being interpolated takes one pose to

another.

- 163 -

Rotor Interpolation

b
a

P

t⊥

Figure 8.3: Orthonormal basis resolved relative to P.

8.2.1 Path of the linear interpolation

Since we have shown that exp(B) is indeed a rotor, it follows that any Eu-

clidean pure-translation rotor will commute with it. Thus we only need con-

sider the interpolant path when interpolating from the origin to some other

point, since any other interpolation can be obtained by simply translating the

origin to the start point. This location-independence of the interpolation is

a desirable property in itself, but also provides a powerful analysis mecha-

nism.

We have identified in section 7.1 the action of the exp(B) rotor in terms

of φ,P, t‖ and t⊥. We now investigate the resulting interpolant path when

interpolating from the origin. We shall consider the interpolant Rλ = exp(λB)

where λ is the interpolation co-ordinate and varies from 0 to 1. For any values

of φ,P, t‖ and t⊥,

λB =
λφ


P+

λ(t⊥+ t‖)n


from which we see that the action of exp(λB) is a translation along λt⊥, a

rotation by λφ in the plane of P and finally a translation along

t ′‖ =−sinc
(

λφ



)
λt‖

(
cos
(

λφ



)
− sin

(
λφ



)
P
)
.

- 164 -

Rotor Interpolation

We firstly resolve a three dimensional orthonormal basis relative to P as

shown in figure 8.3. Here a and b are orthonormal vectors in the plane of

P and hence P = ab. We may now express t‖ as t‖ = taa+ tbb where t{a,b} are

suitably valued scalars.

The initial action of exp(B) upon a frame centred at the origin is therefore

to translate it to λt⊥ followed by a rotation in the plane of P. Due to our

choice of starting point, this has no effect on the frame’s location (but will

have an effect on the pose, see the next section).

Finally there is a translation along t ′‖ which, using c = cos
(

λφ



)
and s =

sin
(

λφ



)
, can be expressed in terms of a and b as

t ′‖ = −
s
λφ

λ(taa+ tbb)(c− sab)

= −
s
φ

[
c(taa+ tbb)+ s(tba− tab)

]
≡ −

s
φ

[
a(tac+ tbs)+b(tbc− tas)

]
.

The position, rλ, of the frame at λ along the interpolation is therefore

rλ =−
s
φ
[a(tac+ tbs)+b(tbc− tas)]+λt⊥

which can easily be transformed via the harmonic addition theorem to

rλ =−
s
φ

α

[
acos

(
λφ


+β

)
+bcos

(
λφ


+β

)]
+λt⊥

where α = (ta)+ (tb), tanβ = − tb

ta and tanβ = −−ta

tb . It is easy, via geo-

metric construction or otherwise, to verify that this implies that β = β+
π

 .

Hence cos(θ+β) = −sin(θ+β). We can now express the frame’s position

as

rλ =−
α

φ

[
asin

(
λφ



)
cos
(

λφ


+β

)
−bsin

(
λφ



)
sin
(

λφ


+β

)]
+λt⊥

- 165 -

Rotor Interpolation

0

0.2

0.4

−0.4

−0.2

0

0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

Interpolant path, φ=9.0π, t
a
=4, t

b
=6, magnitude t

⊥
=1

b

t ⊥

−0.2

0

0.2

0.4

0.6

0.8
−0.4 −0.2 0 0.2

b

View down on plane P

a

−0.4 −0.2 0 0.2
0

0.2

0.4

0.6

0.8

1

b

View perpendicular to P
t ⊥

r0.0

r1.0

t′‖

t‖
r0.75

r0.5

r0.25

Figure 8.4: Example of an interpolant path with the final location being given by t‖ = a+b,

φ = π and t⊥ having a magnitude of 1.

- 166 -

Rotor Interpolation

which can be re-arranged to give

rλ = −
α

φ
[a(sin(λφ+β)− sinβ)+b(cos(λφ+β)− cosβ)]+λt⊥

= −
α

φ
[asin(λφ+β)+bcos(λφ+β)]+

α

φ
[asinβ+bcosβ]+λt⊥

noting that in the case of φ→ , the expression becomes rλ = λt⊥ as one would

expect. Since a and b are defined to be orthonormal, the path is clearly some

cylindrical helix with the axis of rotation passing through α/φ [asinβ+bcosβ].

An illustrative example, with a and b having unit magnitude, is shown in fig-

ure 8.4. It also clearly shows the relation between the direction of vector t‖

and the final translation within the plane of P, t ′‖.

It is worth noting a related result in screw theory, Chasles’ theorem, which

states that any general displacement may be represented using a screw mo-

tion (cylindrical helix) such as we have derived. Screw theory is widely used

in mechanics and robotics and the fact that the naı̈ve linear interpolation

generated by this method is indeed a screw motion suggests that applica-

tions of this interpolation method may be wide-ranging, especially since this

method allows many other forms of interpolation, such as Bézier curves or

three-point quadratic to be performed with equal ease. Also the pure rota-

tion interpolation given by this method reduces exactly to the quaternionic or

Lie group interpolation result allowing this method to easily extend existing

ones based upon these interpolations.

- 167 -

Rotor Interpolation

8.2.2 Pose of the linear interpolation

The pose of the transformed frame is unaffected by pure translation and

hence the initial translation by λt⊥ has no effect. The rotation by λφ in the

plane, however, now becomes important. The subsequent translation along

t ′‖ also has no effect on the pose. We find, therefore, that the pose change λ

along the interpolant is just the rotation rotor Rλφ,P.

8.3 Chapter summary

In this chapter we used the bivector to rotor mapping developed in the previ-

ous chapter to outline how existing interpolation schemes may be naturally

extended to rotations and translations. Such interpolations tend to retain de-

sirable properties when mapped from generators to rotors and allow for a

far greater number of interpolation techniques to be applied to rotations and

translations together than are currently used in computer graphics and ani-

mation. In subsequent chapters we shall see examples of computer graphic

techniques which build upon this method of interpolation.

- 168 -

“They can’t keep this level of graphics up for
much longer! We used to be lucky if we only
got three shades of grey, let alone any real
colours!”

— Cranky Kong

Hardware Assisted Geometric Algebra
on the GPU

9

In this chapter we explore how the Graphics Processing Units (GPUs) in mod-

ern consumer-level graphics cards can be used to perform Geometric Alge-

bra computations faster than a typical single-core CPU.

Within the chapter a GPU implementation of certain GA algorithms is

shown. It is important to note that these implementations are not designed to

be a general-purpose implementation of GA such as Gaigen or CLUCalc. In-

stead these are special purpose routines to implement individual algorithms.

This is because of the space constraints on GPU programs, a half-page GPU

program is considered large, and so all solutions have to be domain specific

to a degree.

In the future as general purpose computing on GPUs becomes more com-

monplace the space requirements may relax sufficiently to allow a general

library to be written but until then we must work within the metaphorical

tiny box given to us.

Hardware Assisted Geometric Algebra on the GPU

Figure 9.1: A simplified block diagram of a typical GPU.

9.1 An Overview of GPU Architecture

The GPU in a graphics card is not designed for general purpose computing.

It is designed, unsurprisingly, to perform the sort of operations useful for

graphics rendering. Figure 9.1 shows a simplified block diagram of a typical

GPU.

In a traditional fixed-function GPU the CPU uploads, over the AGP bus,

a set of vertices, texture maps and some state information. The state includes

projection and view matrices, clipping planes, lighting models, etc. The ver-

tex list and texture maps (if present) are then stored in some on-card memory.

On the card there exists a number of rendering pipelines, each of which

can be run in parallel to increase throughput. The pipeline consists of a vertex

shader which fetches triplets of vertices from the vertex memory, transforms

them using the current projection and view matrices, performs any clipping

- 170 -

Hardware Assisted Geometric Algebra on the GPU

and sends them to the rasteriser.

The rasteriser takes triplets of screen co-ordinate vertices, forms a triangle

from them and outputs a set of pixel positions from which the triangle is ren-

dered along with depth information and interpolated texture co-ordinates.

The fragment shader takes these pixel positions and, using the texture

maps stored in texture memory along with appropriate state information,

calculates the colour of the pixel after all lighting, etc. is performed. The

shaded pixel is then sent to the screen.

In reality the rendering stage is split at the rasteriser allowing for differ-

ing numbers of vertex and fragment shaders but for the purposes of GPU

programming one can view the shaders as being within the same pipeline.

In modern programmable GPUs both the vertex and fragment shaders

are fully programmable allowing different per-vertex and per-pixel transfor-

mation and shading that is allowed in the traditional fixed-function pipeline.

Each shader is, in effect, an efficient vector processor and, on modern

graphics cards, there are a number working in parallel. To perform general

purpose computation on the GPU we must find ways of modifying our algo-

rithms to fit this model.

9.2 GPU Programming Methods

9.2.1 DirectX shader language

Microsoft’s DirectX[42] is a graphics programming API for Windows and, in

a modified form, the Microsoft XBox and XBox 360 gaming platforms. As

- 171 -

Hardware Assisted Geometric Algebra on the GPU

part of the API it specifies a generic shading language[43] which abstracts

the vertex and fragment shaders. Each version of DirectX specifies a mini-

mum set of shader capabilities which must be supported by a card claiming

compatibility with that level of the API. Consequently a shader written in Di-

rectX’s shading language is portable across all cards which support that level

of the API. A disadvantage of DirectX is that it does not expose any function-

ality beyond the specified minimum and it is not portable across operating

systems.

9.2.2 OpenGL shader language

OpenGL[60] is a cross-platform C-based graphics API. It is the de facto stan-

dard API for non-Windows platforms and is well supported on Windows

platforms by both ATI and nVidia, the dominant vendors at the time of writ-

ing.

The OpenGL 2.0 specification[58] proposed by 3DLabs includes a hardware-

agnostic shading language[32] known as GL Shading Language (GLSL) which

provides a similar level of functionality to that exposed in DirectX.

Currently few hardware vendors support OpenGL 2.0 — at the time of

writing nVidia was the only mainstream vendor to provide support in their

consumer-level hardware[47].

OpenGL 1.4 and below provide support for programmable shaders via a

set of per-vendor extensions. Unfortunately these require programming the

GPU in a variety of assembly languages and vary between different GPUs.

- 172 -

Hardware Assisted Geometric Algebra on the GPU

9.2.3 The Cg toolkit from nVidia

Both the OpenGL and DirectX shading languages have a number of disad-

vantages from the point of view of research. The OpenGL shading language,

whilst being high-level and convenient to program in, is not widely avail-

able. The DirectX toolkit provides only a ‘lowest common denominator’

shading language, it is not particularly high-level and is, for all intents and

purposes, limited to the Microsoft Windows operating systems.

An attempt to bridge these gaps is the Cg toolkit[45] from nVidia. It pro-

vides a high-level C-like shading language which may be compiled at run-

time or ahead of time into either DirectX shading language or the myriad

OpenGL extensions which exist for accessing the programmable shaders.

Along with these advantages is the ‘future-proof’ nature of Cg. The core

Cg language is easily extended via so-called ‘profiles’. These either restrict

the language to correspond to the capabilities of particular GPUs or add more

features to expose new GPU abilities. As an example in figure 9.1 it was

implied that the vertex shader cannot access the texture-map memory. This

was true of older cards but the latest generation of nVidia cards can access

texture maps from within the vertex shader[46]. Adding this capability to

Cg was simply a case of releasing a new profile where texture-map related

parts of the language were now available from within both shaders. Older

shaders would still work however and the presence of this capability could

be queried at run-time.

Because of these advantages it was decided to use Cg as the basis for the

- 173 -

Hardware Assisted Geometric Algebra on the GPU

GPU computing research. None of the techniques described below require it

as they can all be re-structured to use alternate APIs.

9.3 A Cg Implementation of Generator Exponentiation

In order to integrate the GA interpolation scheme described in the previous

chapter into the GPU graphics pipeline it had to be re-cast into the mathemat-

ical language of the GPU. Graphics cards are optimised for linear algebra on

4-dimensional vectors and ×  matrices, reflecting the dominant language

used in graphics.

It was decided to abstract away the GA method and represent rotors and

generators as sets of vectors. The Cg interface and corresponding CPU-side

C interface are shown in figure 9.2. The required GA operations for rotor

exponentiation and application (X 7→ RXR̃) were expanded out in terms of

basis components and implemented directly in Cg. The routines could now

be used as a ‘black box’ by the GPU programmer. Indeed no GA knowledge

is required for their use, merely that one applies rotors to points to transform

them, one can convert generators into rotors and generators may be linearly

interpolated.

A more general GA-solution, such as libcga, was impractical given the

current space constraints on Cg programs although future GPUs may pro-

vide enough space to make such a library feasible.

- 174 -

Hardware Assisted Geometric Algebra on the GPU

1 /∗ Cg interface for generator exponentiation and rotor operations ∗/
2

3 /∗ Rotors are represented as an array of two four−dimensional vectors to form
4 ∗ an eight−dimensional vector which represents the following components of
5 ∗ the rotor :
6 ∗
7 ∗ [e 0, e 12, e 23, e 31, e 14, e 24, e 34, e 1234]
8 ∗
9 ∗ where e = e 4 and \bar{e} = e 5. We need not represent the components with

10 ∗ parts parallel to e 5 since we may trivially reconstruct them for
11 ∗ rigid−body rotors.
12 ∗/
13

14 /∗ Generators are represented as na array of two three−dimensional vectors[1]
15 ∗ to form a six−dimensional vector which represents the following components
16 ∗ of the generator:
17 ∗
18 ∗ [e 12, e 23, e 31, e 14, e 24, e 34]
19 ∗
20 ∗ where e = e 4 and \bar{e} = e 5. Again the components containing e 5 can be
21 ∗ reconstructed.
22 ∗
23 ∗ [1] When compiled for the GPU this may well be expanded out to two
24 ∗ / four/−dimensional vectors but it is convenient to split the generator such
25 ∗ in the implementation.
26 ∗/
27

28 /∗ Sets rotor [] to contain the exponentiation of generator[] ∗/
29 void exp generator(in float3 generator[2], out float4 rotor [2]) {
30 ...
31 }
32

33 /∗ Returns the point the origin is mapped to by rotor[] ∗/
34 float3 apply rotor to origin (in float4 rotor [2]) {
35 ...
36 }
37

38 /∗ Returns the point x is mapped to by rotor[] ∗/
39 float3 apply rotor to point (in float4 rotor [2], in float3 x) {
40 ...
41 }

1 /∗ C interface for generator exponentiation and rotor operations ∗/
2

3 /∗ Like the Cg interface rotors are represented as eight−dimensional vectors
4 ∗ and generators by six−dimensional vectors. Unlike Cg there are no vector
5 ∗ primitive types in C and so appropriately dimensioned arrays of floats are
6 ∗ used. ∗/
7

8 /∗ Sets rotor [] to contain the exponentiation of generator[] ∗/
9 void exp rotor(float generator[6], float rotor [8]);

10

11 /∗ Sets x to the point the origin is mapped to by rotor[] ∗/
12 void apply rotor to origin (float rotor [8], float x [3]);
13

14 /∗ Overwrites x with the point x is mapped to by rotor[] ∗/
15 void apply rotor(float rotor [8], float x [3]);

Figure 9.2: The Cg and C interfaces for dealing with rotors and exponentiated generators.

- 175 -

Hardware Assisted Geometric Algebra on the GPU

9.4 Mesh Deformation

In this section we shall give an example of a vertex shader that uses GA to

perform mesh deformation. The deformation scheme given is a simple ap-

plication of Geometric Algebra but nicely shows the applicability of GA to

a wide variety of problems. The method developed has a number of nice

properties, but it is intended as an illustration of the power of GA algo-

rithms when implemented on the GPU. It may be useful in its own right

if researched further but the field of mesh deformation is large and beyond

the scope of this discussion.

9.4.1 Method

We shall now present a GA-based mesh deformation scheme suitable for im-

plementation on a GPU. In this scheme we start with an existing mesh and

set of key rotors, {R,R, · · · ,RNk}, which we wish to use to deform the mesh.

Our scheme seeks to find some automatic method of representing each point

on the mesh as some function of the key rotors; changing the key rotors will

then lead to a deformation of the mesh. Desirable properties include smooth-

ness, small changes in the rotors lead to small changes in the mesh, and to

be intuitive, i.e. changes in the rotors should produce changes in the mesh

which a user, ignorant of the method, would expect.

Our assignment scheme is illustrated in figure 9.3. Firstly we form a set

of generators, {B,B, · · · ,BNk}, such that

{R,R, · · · ,RNk}≡ {exp(B),exp(B), · · · ,exp(BNk)} .

- 176 -

Hardware Assisted Geometric Algebra on the GPU

R1

R2

d2,i
d1,i

Pi

Ri

RipiR̃i

Figure 9.3: Representing a point, Pi, on a mesh as a rotor, Ri, and displacement, pi, given a

set of key rotors, {R,R}.

We also find the image of the origin, Ok = Rkn̄R̃k, for each key rotor. For each

point-representation on the mesh, Pi, we find the Euclidean distance from it

to the image of the origin in each key rotor,

dk,i =
√

−Ok ·Pi.

We then form a rotor, Ri, for each point on the mesh as a weighted sum of the

key rotors,

Ri = exp

(∑Nk
k=wi(dk,i)Bi∑Nk

k=wi(dk,i)

)
where wi(d) is a function which defines the relative weights of each rotor

depending on its proximity to the mesh point. One might choose a relatively

simple weight function

wi(d) =


d + ε

- 177 -

Hardware Assisted Geometric Algebra on the GPU

where ε is a small value to avoid a singularity when the key rotor and mesh

intersect. In our implementation we wished to have key rotors with varying

degrees of influence. This was accomplished by using a Gaussian weight

function,

wi(d) = exp
(
−

d

σ
i

)
with σi giving the radius of influence of a particular key rotor.

Finally we find a point, pi, which is transformed by Ri to coincide with Pi,

(Ri piR̃i) ·Pi = 

which may be found by simply applying the reversal of Ri to Pi

pi = R̃iPiRi.

The point Pi is now stored in memory as a set of dk,i for each key rotor and

the point pi.

Our deformation procedure is now simple. Given a new set of key rotors,{
R ′,R

′
, · · · ,R ′Nk

}
, and a corresponding set of generators,

{
B ′,B

′
, · · · ,B ′Nk

}
, we

can form the deformed mesh point P ′i given the previously calculated dk,i and

pi as

R ′i = exp

(∑Nk
k=wi(dk,i)B ′i∑Nk

k=wi(dk,i)

)
(9.1)

P ′i = R ′i piR̃ ′i . (9.2)

It is easy to show by direct substitution that for R ′k = Rk this reduces to P ′i = Pi

as would be expected.

- 178 -

Hardware Assisted Geometric Algebra on the GPU

9.4.2 GPU-based implementation

Since the GPU distinguishes between global state and per-vertex information

we must decide what information needs to be given to the GPU and how. In

our mesh deformation example we need the key rotors which are part of the

global state and, for each mesh point, the vector pi and set of distances dk,i.

In OpenGL each vertex has at least a three-dimensional position vector

associated with it and may have a normal vector. In addition there are a

number of texture co-ordinates which may be associated with each vertex.

In our implementation the values of w(dk,i) will be stored into the texture

co-ordinates. The weight function is pre-computed to save time.

Figure 9.4 gives the vertex shader used to perform mesh deformation in

this example. Line 2 includes the standard set of rotor manipulation func-

tions which were described above.

The generators associated with the key rotors are passed in the state ar-

ray generators[][] and are constant for a particular scene. Lines 32 to

39 perform the summation in equation 9.1 and line 41 uses the function

exp generator() to form R ′i . Line 42 applies R ′i to the point pi and the re-

mainder of the shader is boilerplate code to project into screen-space and

perform a simple lighting calculation.

The algorithm and OpenGL code required to compute the rotor weights

and offset-vector pi for each mesh vertex is shown in algorithm 9.5. Note that

this need only be performed once per vertex at initialisation.

In the actual implementation display lists were utilised. A display list is

- 179 -

Hardware Assisted Geometric Algebra on the GPU

1 /∗ Include Cg implementations of rotor exponentiation and ’logarithm’ ∗/
2 #include "rotor_tools.cg"
3

4 /∗ Per−vertex input ∗/
5 struct appin {
6 float4 Position : POSITION; /∗ Store p i as the vertex position ∗/
7 float4 Normal : NORMAL; /∗ Normal vector ∗/
8 float4 Diffuse : DIFFUSE; /∗ Diffuse colour ∗/
9

10 /∗ Store d {k, i} in the texture co−ordinates ∗/
11 float2 Coeffs1 : TEXCOORD0; float2 Coeffs2 : TEXCOORD1;
12 float2 Coeffs3 : TEXCOORD2; float2 Coeffs4 : TEXCOORD3;
13 };
14

15 /∗ Per−vertex output ∗/
16 struct vertout {
17 float4 HPosition : POSITION; /∗ Screen−space position ∗/
18 float4 Color : COLOR; /∗ Colour after lighting ∗/
19 };
20

21 vertout main(appin IN, const uniform float4x4 ModelViewProj : GL MVP,
22 uniform float4x4 ModelViewIT, uniform float4x4 ModelView,
23 uniform float3 generators [8][2])
24 {
25 vertout OUT; float4 p = IN.Position ;
26 float3 generator[2]; float4 rotor [2]; /∗ For calculating R’ i ∗/
27

28 /∗ Initialse generator to be zero ∗/
29 generator[0] = float3 (0,0,0); generator[1] = float3 (0,0,0);
30

31 /∗ Perform summation ∗/
32 generator[0] += generators[0][0] ∗ IN.Coeffs1.x; generator[1] += generators[0][1] ∗ IN.Coeffs1.x;
33 generator[0] += generators[1][0] ∗ IN.Coeffs1.y; generator[1] += generators[1][1] ∗ IN.Coeffs1.y;
34 generator[0] += generators[2][0] ∗ IN.Coeffs2.x; generator[1] += generators[2][1] ∗ IN.Coeffs2.x;
35 generator[0] += generators[3][0] ∗ IN.Coeffs2.y; generator[1] += generators[3][1] ∗ IN.Coeffs2.y;
36 generator[0] += generators[4][0] ∗ IN.Coeffs3.x; generator[1] += generators[4][1] ∗ IN.Coeffs3.x;
37 generator[0] += generators[5][0] ∗ IN.Coeffs3.y; generator[1] += generators[5][1] ∗ IN.Coeffs3.y;
38 generator[0] += generators[6][0] ∗ IN.Coeffs4.x; generator[1] += generators[6][1] ∗ IN.Coeffs4.x;
39 generator[0] += generators[7][0] ∗ IN.Coeffs4.y; generator[1] += generators[7][1] ∗ IN.Coeffs4.y;
40

41 exp generator(generator, rotor); /∗ Exponentiate to form R’ i ... ∗/
42 p.xyz = apply rotor to point (rotor , p); /∗ ... and apply it to p i to get our final mesh point ∗/
43

44 /∗ Set translation part of the rotor to zero and rotate the normal to match the new mesh point. ∗/
45 rotor [1] = float4 (0,0,0,0); float4 normalVec = mul(ModelViewIT, IN.Normal);
46 normalVec.xyz = normalize(apply rotor to point(rotor , normalVec.xyz));
47

48 /∗ Project mesh point to screen−space and light it as usual. ∗/
49 OUT.HPosition = mul(ModelViewProj, p);
50 float3 lightVec = normalize(float3(0,0,−5));
51 OUT.Color = (0.3 + 0.7∗ lit (dot(normalVec.xyz, lightVec.xyz),0,0). y) ∗ IN.Diffuse;
52 OUT.Color.a = IN.Diffuse.a;
53

54 return OUT;
55 }

Figure 9.4: The vertex shader used to perform GA-based mesh deformation.

- 180 -

Hardware Assisted Geometric Algebra on the GPU

Require: Pi, the null-vector representation of mesh vertex i.
Require: B≡ {B,B, · · · ,Bk, · · · }, the set of key rotor generators.

1: wsum := 

2: for k :=  to n(B) do
3: R := exp(Bk)

4: O := Rn̄R̃
5: wk := w(

√
−O ·P)

6: wsum := wsum +wk

7: end for
8: for k :=  to n(B) do
9: wk :=

wk
wsum

10: end for
11: p := R̃PiR
12: glMultiTexCoord2f(GL TEXTURE0, w, w);
13: glMultiTexCoord2f(GL TEXTURE1, w, w);
14: glMultiTexCoord2f(GL TEXTURE2, w, w);
15: glMultiTexCoord2f(GL TEXTURE3, w, w);
16: glVertex(p);

Figure 9.5: Algorithm for computing w(dk,i) and pi for each mesh point and storing them

in the texture co-ordinates and vertex position. In this case there are eight key

rotors.

an OpenGL technique for uploading a set of OpenGL calls to the graphics

card and executing them again with one call. Since the vertices and texture

co-ordinates generated by algorithm 9.5 don’t change once calculated each

mesh could be processed once and sent to the graphics card as a display list.

Using a display list meant that the deformation now became extremely

efficient in terms of CPU usage. For each frame all that needed to be done

by the CPU was update the state variables holding the key rotor generators

and ask for the display list to be drawn. Using such a technique resulted

- 181 -

Hardware Assisted Geometric Algebra on the GPU

in the Unix top utility reporting 0% CPU utilisation, i.e. below measurable

resolution.

9.4.3 Quality of the deformation

The quality of a mesh deformation technique is ultimately subjective. A sim-

ple example is shown in figure 9.6. In this example there were eight key

rotors labelled ‘000’ to ‘111’ in binary. The rotors were moved to positions

within a rabbit model and appropriate weighting and offset-vectors were as-

signed using algorithm 9.5. The ‘001’ rotor, which was positioned within the

rabbit’s head, was then moved and the results are shown. The movement is

smooth, natural and intuitive.

Figure 9.7 shows the natural ‘plasticine-like’ effect the deformation scheme

has on a unit cube with key rotors initially placed on its corners. In addition

to this figure 9.8 shows the effect of placing the key rotors along a central axis

and applying opposite rotations at either end. Notice how the cube behaves

as expected and does not collapse in the middle.

9.4.4 Performance

To test the relative performance of software and hardware two implemen-

tations were made, one software and one hardware. Both implemented the

same mesh deformation algorithm as above and both used as near equal,

within the intersection of C and Cg, implementations of the generator expo-

nentiation and rotor application routines.

- 182 -

Hardware Assisted Geometric Algebra on the GPU

Figure 9.6: An example of animating a rabbit’s head using key rotors and an automatically

assigned mesh.

- 183 -

Hardware Assisted Geometric Algebra on the GPU

(a)

(b)

Figure 9.7: An example of mesh deformation acting on a unit cube. (a) Initial key rotors and

automatically assigned mesh. (b) Deformed mesh after movement of key rotors.

- 184 -

Hardware Assisted Geometric Algebra on the GPU

(a)

(b)

Figure 9.8: An example of screw deformation acting on a unit cube. (a) Initial key rotors and

automatically assigned mesh. (b) Twisted mesh after movement of key rotors.

- 185 -

Hardware Assisted Geometric Algebra on the GPU

Frames per second

Polygons Hardware Software Ratio

14,406 219.10 18.81 11.65:1

20,886 160.80 12.50 12.86:1

29,400 119.50 9.08 13.16:1

43,350 83.91 6.26 13.40:1

60,000 62.13 4.65 13.36:1

Frames per second

Polygons Hardware Software Ratio

93,750 20.42 2.89 7.07:1

135,000 14.20 2.07 6.86:1

240,000 8.13 1.14 7.13:1

372,006 5.32 0.75 7.09:1

– – – –

Table 9.1: The relative performance, in frames per second, between the GPU and pure-

software mesh deformation implementations.

100 200 300 400
Polygons (thousands)

6

8

10

12

14

R
a
ti

o
 o

f
H

a
rd

w
a
re

 F
P
S

 t
o
 S

o
ft

w
a
re

 F
P
S

Relative Performance of Mesh Deformation Implementations

Comparison of Hardware to Software

Figure 9.9: A plot of the ratio between FPS using the GPU-based implementation and the

pure-software implementation.

- 186 -

Hardware Assisted Geometric Algebra on the GPU

The implementations differed most in the use of display lists. To mirror

real-world practices each model in the hardware implementation was up-

loaded to the graphics card in a display list, since the per-vertex set of dk,i and

pi could be pre-computed. In the software implementation these were also

pre-computed, but the deformed vertices had to be uploaded to the graphics

card once-per frame since the deformation step was done in software.

Table 9.1 shows the number of frames per second that could be displayed

with a simple cube model at various different polygon counts. A simple

model was chosen so that the generation, per frame, of un-deformed model

vertices in the software implementation would take as little time as possi-

ble, being algorithmically generated rather than fetched from main memory

providing a fairer test of the speeds of the deformation algorithm. Figure 9.9

shows the ratio of improvement between software and hardware implemen-

tations with polygon count.

It is interesting to note the sudden dip in performance around 100,000

polygons. Since the internals of GPUs are not publicly available it is only

possible to speculate as to the reason of this but it might be related to vertex

cache size. If all of the model vertices fit within the on-GPU vertex cache

they may be processed efficiently without accessing graphics memory. If the

number of vertices exceed the vertex cache size then they must be copied

into the cache in batches which slows performance.

It is interesting to note the sudden dip in performance around 100,000

polygons. Since the internals of GPUs are not publicly available it is only

- 187 -

Hardware Assisted Geometric Algebra on the GPU

possible to speculate as to the reason of this but it might be related to vertex

cache size. If all of the model vertices fit within the on-GPU vertex cache

they may be processed efficiently without accessing graphics memory. If the

number of vertices exceed the vertex cache size then they must be copied

into the cache in batches which slows performance.

9.5 Dynamics

In this section we will develop a simple method for doing dynamics with a

sphere which has been deformed with a set of rotors. We shall show how a

simple dynamics example using such a method may be implemented on the

GPU.

Recall that a GPU has two classes of shaders. It has vertex shaders which

are applied per-vertex and fragment shaders which are applied per-pixel.

Since, in a typical scene, one would expect the number of pixels on screen to

be very much greater than the number of vertices, GPUs generally have more

parallel fragment shaders than vertex shaders. If we can re-formulate our

solution to use fragment shaders we might expect even greater performance

than simply using the vertex shader.

Algorithms implemented on the fragment shaders have one further ad-

vantage when compared to those implemented on the vertex shader when

one makes use of the render to texture feature on modern graphics cards. Us-

ing this feature, rendering can be directed to a texture stored in the graphics

card memory rather than the screen. This feature allows iterative algorithms

- 188 -

Hardware Assisted Geometric Algebra on the GPU

D

P

P ′

D′

Figure 9.10: Given a deformation scheme D which maps our object to the unit sphere we

can tell whether a point, P, is inside the object by testing if the mapped point,

P ′, is inside the sphere.

to be developed. The concept is simple. A texture is created which stores

a set of initial values. A square is then rendered with a fragment shader

which, for each pixel in the square, reads the initial value from the texture

and outputs the result of the next iteration. If this square is rendered into the

original texture then the result of each iteration replaces the previous one.

This process may be repeated as often as is desired. In reality there are a few

implementation issues. Aside from the API calls required to set up the ren-

der to texture and appropriate projection matrices, a significant issue is that

the shader is required to write back to its input which could lead to concur-

rency issues. To avoid this one generally uses two textures, an ‘input’ and an

‘output’, which are swapped between each iteration.

- 189 -

Hardware Assisted Geometric Algebra on the GPU

9.5.1 Collision detection via deformation

We shall develop a simple example to illustrate this method. In our exam-

ple we shall implement an approximate simulation of a cloth falling onto a

complex smooth object.

To begin with we need a GPU-based simulation of the cloth itself, for

when it is moving in space away from the target object. The aim of this ex-

ample is to demonstrate complex collision rather than cloth simulation per se

and so we choose a very simple ball and spring model; the cloth is composed

of a N×M grid of masses connected by simple Hookian springs. Formally, if

we let Pi, j be the position vector of the ball in row i, column j then the force

acting on it, Fi, j is

Fi, j =
∑

α∈{−,}

∑
β∈{−,}

bi+α, j+β(Pi, j −Pi+α, j+β)

where

bi, j =

  if i ∈ {, · · · ,N}, j ∈ {, · · · ,M}

 otherwise

The variation of Pi, j over time may then be obtained by numerically integrat-

ing the force twice.

Such simple dynamics are often employed in games where the appear-

ance of correct physics is often more desirable, if it is faster, than a full ‘cor-

rect’ calculation. We shall use a common game technique which may be sum-

marised as ‘detect and backtrack’.

Suppose a cloth vertex were known to be outside of the target object at

time t and we detect it is to be inside the object at time t +∆t. We stop the

- 190 -

Hardware Assisted Geometric Algebra on the GPU

simulation and backtrack to time t +∆t − toffset with toffset < ∆t such that the

vertex is just touching the target object. We then use simple surface physics

to modify the total force acting on the vertex to cause reflection, friction or

any other surface property we may wish. The simulation is then restarted

from this point.

We shall discuss the precise implementation of the cloth simulation later

but for the moment we note that the key operation is detecting the interpen-

etration of the grid of cloth vertices and the target object and being able to

move penetrating vertices to the surface of the object.

Our approach is illustrated in figure 9.10. We shall assume some invert-

ible, locally conformal, GA-based deformation scheme D which will deform

the unit sphere to our target object. We now apply the inverse scheme D

to both our target object and the set of cloth vertices. The target object is

mapped to the unit sphere and the set vertices are mapped to a different set

of vertices. Our penetration test for vertices is simply to see if its distance

from the origin is less than unity. We can thereby identify all penetrating

vertices. Any penetrating vertex can be corrected simply by moving the de-

formed vertex to the unit-sphere surface. If we re-apply the deformation

scheme the unit sphere is mapped back to the target object and the set of

corrected vertices is mapped to a set which all lie outside the target object.

- 191 -

Hardware Assisted Geometric Algebra on the GPU

9.5.2 A suitable deformation scheme

We wish our deformation scheme to be locally conformal and, preferably,

for the normal information associated with any point on the target object to

be preserved for lighting and dynamics. Below we present a simple scheme

based upon weighted sums of pure rotation generators which fulfils this re-

quirement.

We begin by considering a rotor, Ri = exp(Bi), representing a rotation

around a known point Pi. Clearly Ri,λ = exp(λBi) is also a pure-rotation for

some scalar λ. To deform a particular point representation, X = F(x), using

the key-generator Bi we perform the mapping

X 7→ Ri,w(X ,Pi)XR̃i,w(X ,Pi)

where w(A,B) is a weighting function with range [,]. For a simple defor-

mation scheme we might choose w(·) to be

w(A,B) =

 −d(A,B) if d(A,B)< 

 otherwise

where d(A,B) is the Euclidean distance metric defined in equation 2.8. This

is of course a linear fall-off. One could easily create non-linear exponential

or sigmoid fall-off which would lead to smoother deformation at the cost of

greater computational complexity.

The effect of the deformation scheme is shown diagrammatically in figure

9.11b. Here four unit lengths are deformed by rotating points on a set of

spherical shells centred on Pi. On each spherical shell the deformation is

- 192 -

Hardware Assisted Geometric Algebra on the GPU

(a) (b)

P P

Figure 9.11: Diagram illustrating weighted generator deformation around a point P. a) Un-

deformed state. b) Effect of weighted rotation deformation.

therefore locally conformal. Normal to the shells the deformation is less so

but, as is often the case in Computer Graphics, the errors introduced by this

may be ignored since they are perceptually slight.

Since we are using position-dependent rotors we can view the deforma-

tion not as a point-wise deformation scheme but a full local-frame deforma-

tion scheme. For example we can represent an orientation associated with

X as a pure-rotation rotor, RX , which is applied to some known reference

orientation. The post-deformation orientation is now

RX 7→ Ri,w(X ,Pi)RX .

Specifically, if the point X is a mesh vertex with associated normal n̂=RX eR̃X

- 193 -

Hardware Assisted Geometric Algebra on the GPU

then we can find the deformed normal, n̂ ′, as

n̂ ′ = Ri,w(X ,Pi)RX eR̃X R̃i,w(X ,Pi).

This ‘frame deformation’ property is a key one when it comes to perform-

ing perceptually valid dynamics on deformed objects.

9.5.3 Implementation

There are two stages to each step of the simulation, firstly the location of

the cloth vertices are updated followed by the detection and correction of

vertices which penetrate the object. For these vertices we perform some ba-

sic surface physics removing force components normal to the surface and

crudely modelling friction by multiplying the tangential velocity component

by some fixed friction coefficient between 0 and 1.

Both of these steps are performed on the GPU. Unlike the previous exam-

ple this simulation required feedback. The output from the simulation had

to be fed back to the input.

The first stage in the simulation is the calculation of forces, velocities and

positions for each cloth vertex.

The location of each cloth vertex was stored in a texture with each pixel

in the texture corresponding to a vertex in the cloth. The red, green and blue

components specifies the x, y and z co-ordinates respectively. Many GPUs

only allow for texture components to be in the range [,], effectively restrict-

ing the cloth to the unit cube. This could have been overcome with the intro-

duction of appropriate scaling constants, but newer nVidia GPUs allow for

- 194 -

Hardware Assisted Geometric Algebra on the GPU

float buffers which remove this restriction and they were used in this imple-

mentation due to their increased accuracy and convenience. A simple vertex

shader could then be used when rendering the cloth to position the vertices

according to the contents of the texture. In addition to the vertex texture a

separate texture was created holding the velocity of each cloth vertex in a

similar manner.

To update these textures we made use of render to texture support in newer

GPUs where pixel and vertex shaders can be used to render images, not to

screen, but to a particular texture. By rendering a single quad (or two trian-

gles) into a texture we could invoke the pixel shader for each texel.

GPUs cannot access the texture being rendered into within pixel shaders

for reasons of concurrency and hence two pairs of textures were maintained,

one pair for the velocities and one pair for the vertex positions. At each step,

one member of the pair would reflect the ‘current state’ and the other would

be written into representing the ‘new state’. At the end of the simulation step

their rôles would be reversed.

The first part of figure 9.12 shows the shader used to sum forces. The

force on each vertex is calculated as the sum of forces due to Hookian springs

which connect it to its immediate neighbours. The integration of force over

time to give velocity is simply Euclid’s method due to its ease of implemen-

tation and compactness; space is a premium in shaders.

The first part of figure 9.13 shows the shader used to update vertex po-

sitions. Again, the velocity is integrated by simple summing to make the

- 195 -

Hardware Assisted Geometric Algebra on the GPU

1 // Shader to calculate force on each vertex
2

3 #include "map.cg" // Tools to map to and from deformed space
4

5 // Various ’ tunables’ to change dynamics
6 #define SPRING CONST 1.5
7 #define GRAVITY −0.015
8 #define FRICTION 0.8
9 #define DAMPING 0.98

10 #define STEP 0.075
11

12 // Texture samplers for reading current vertex positions and velocities .
13 uniform const samplerRECT verticesTex : TEXUNIT0;
14 uniform const samplerRECT velocitiesTex : TEXUNIT1;
15 // Dimensions and ideal inter vertex spacing of cloth
16 uniform const int2 dimensions;
17 uniform const float idealSpacing;
18

19 // Add the cloth vertex/ cloth vertex Hooke’s law forces to a particular vertex.
20 void update force(const int2 dPos, const int2 wPos, const float3 v, inout float3 force) {
21 float3 delta ;
22 float d;
23 int2 cPos = dPos + wPos;
24 if ((cPos.x < dimensions.x) && (cPos.y < dimensions.y) && (cPos.x >= 0) && (cPos.y >= 0)) {
25 delta = texRECT(verticesTex, cPos).rgb − v;
26 d = length(delta) / length((float2)dPos); d −= idealSpacing;
27 force += clamp(SPRING CONST ∗ d, −5,5) ∗ normalize(delta);
28 }
29 }
30

31 #define DO FORCE(a,b) { update force(int2(a,b), wPos, v, force); }
32 float3 main(int2 wPos : WPOS) : COLOR {
33 float3 v = texRECT(verticesTex, wPos).rgb;
34 float3 vel = texRECT(velocitiesTex, wPos).rgb;
35 float3 force = float3 (0,GRAVITY,0);
36 // Resolve spring forces in a cross around the vertex
37 DO FORCE(0, −1); DO FORCE(1, 0); DO FORCE(0, 1); DO FORCE(−1, 0);
38 vel = DAMPING∗vel + STEP∗force;
39 // Now deform so taget object becomes unit−sphere
40 map pos to sphere(v, vel, v);
41 // If we’re inside the sphere or on the surface remove the component of
42 // velocity into the surface and attenuate the component tangential.
43 if (length(v) <= 1.0) {
44 v = normalize(v); float d = dot(v, vel);
45 if (d < 0.0)
46 { vel −= d ∗ v; vel ∗= FRICTION; }
47 }
48 // Deform back to real−space.
49 map sphere to pos(v, vel, v);
50 return vel ;
51 }

Figure 9.12: The pixel shader for summing the forces on the cloth vertices and removing

normal components of velocity.

- 196 -

Hardware Assisted Geometric Algebra on the GPU

shader small and fast.

The second part of the simulation takes place after deformation such that

the target object becomes the unit sphere. In figure 9.13 the new vertex po-

sition is simply moved so that it does not penetrate the object. In figure 9.12

some basic surface physics is performed removing components of velocity

into the object and attenuating tangential components to simulate friction.

Both shaders use a Cg implementation of the deformation scheme which

is implemented in figure 9.14. Here the components of each key generator are

stored in a texture which is used to deform any vertex passed to the function.

Results

Figure 9.15 shows a selection of scenes from the final proof of concept appli-

cation. You can see the central object which is a unit-sphere which has been

deformed by 4 key-generators with linear fall-off. The cloth simulation is

then allowed to fall on the object and slides off. All of this is performed on

the GPU in real-time (50 frames per second) for a 1024-vertex cloth model.

9.6 Chapter summary

In this chapter we investigated various techniques, based on GA, which

might find applications on a Graphics Processing Unit common on many

desktop PCs. We briefly discussed the architecture of these units and out-

lined how they might be ‘tricked’ into performing general purpose computa-

tion. It was mentioned that GA algorithms might well be very ‘GPU-friendly’

- 197 -

Hardware Assisted Geometric Algebra on the GPU

in that they consist of a number of steps which have few or in many cases no

special cases so that the operations may be carried out in parallel using iden-

tical processing units.

We then presented a set of samples using these techniques, accelerated

via a GPU. A mesh deformation scheme was discussed, based on rotor in-

terpolation, and an example of how rotor interpolation may be performed

on the GPU was shown. This solution was benchmarked and shown to be

significantly faster than a pure-software approach.

A simplistic physics simulation was also presented running on the GPU.

Here the fact that rotor interpolation may be viewed in some way as a ‘frame

distortion’ scheme allowed us to perform surface physics on a deformed

sphere rapidly and in a simple manner.

The techniques outlined in this chapter are a useful starting point for

future focused research into the hardware acceleration of GA-based algo-

rithms.

- 198 -

Hardware Assisted Geometric Algebra on the GPU

1 /∗ Program to calculate new vertices from velocities ∗/
2 #include "map.cg"
3

4 float3 main(in float2 wPos : WPOS,
5 uniform samplerRECT verticesTex : TEXUNIT0,
6 uniform samplerRECT velocitiesTex : TEXUNIT1
7) : COLOR
8 {
9 // Get the current vertex position (v) and velocity (vel)

10 float3 v = texRECT(verticesTex, wPos).rgb;
11 float3 vel = texRECT(velocitiesTex, wPos).rgb;
12 float3 junk = float3 (1,0,0);
13

14 // ’ Integrate ’ the velocity to update the vertex position .
15 v += vel;
16

17 // Deform so our target is the unit−sphere.
18 map pos to sphere(v, junk, v);
19

20 // If we are inside the sphere, correct .
21 if (length(v) < 1.0) {
22 v = normalize(v);
23 }
24

25 // Deform back.
26 map sphere to pos(v, junk, v);
27

28 return v;
29 }

Figure 9.13: The pixel shader used to update the vertex position and correct for penetration.

- 199 -

Hardware Assisted Geometric Algebra on the GPU

1 // ∗∗ Utility functions to map to and from a rotor deformed space. ∗∗
2 // The 6D generators representing the deforming rotors are stored in a
3 // texture . The 6 components are held in a 2−pixel pair where the first pixel
4 // hold the 3 rotational components and the second holds the 3 positional
5 // components.
6

7 #include "rotor_tools.cg"
8

9 #define MAX GENERATORS 4 // Maximum number of deforming generators stored in texture
10 #define RANGE 2.5 // The range of influence of the deformation rotors.
11 const float M PI = 3.14159265358979323846; // Pi (more or less)
12 uniform const samplerRECT deformGenerators : TEXUNIT3; // The actual generators are held in texture unit 3.
13

14 // Function to deform a point and normal by the deforming rotors
15 void map pos to sphere(in const float3 pos, inout float3 normal, out float3 sph)
16 {
17 int i ;
18 sph = pos;
19 for(i=0; i<MAX GENERATORS; i++) {
20 float3 rotPart = texRECT(deformGenerators, int2(i∗2, 0)).rgb;
21 float3 location = texRECT(deformGenerators, int2(i∗2 + 1, 0)).rgb;
22

23 if (length(rotPart) > 0.0) {
24 sph −= location;
25 float ls = length(sph) / RANGE;
26 if (ls < 1.0) {
27 float3 myrp = − rotPart ∗ (0.5 ∗ cos(M PI ∗ ls) + 0.5);
28 float4 r1;
29 if (length(myrp) > 0.0) {
30 exp rot generator(myrp, r1);
31 sph = apply rot rotor to point (r1,sph); normal = apply rot rotor to point (r1,normal);
32 }
33 }
34 sph += location;
35 }
36 }
37 }
38

39 // Function to undo the deformation applied by map pos to sphere().
40 void map sphere to pos(in const float3 sph, inout float3 normal, out float3 pos)
41 {
42 int i ;
43

44 for(i=MAX GENERATORS−1; i>=0; i−−) {
45 float3 rotPart = texRECT(deformGenerators, int2(i∗2, 0)).rgb;
46 float3 location = texRECT(deformGenerators, int2(i∗2 + 1, 0)).rgb;
47

48 if (length(rotPart) > 0.0) {
49 pos −= location;
50 float ls = length(pos) / RANGE;
51 if (ls < 1.0) {
52 float3 myrp = rotPart ∗ (0.5 ∗ cos(M PI ∗ ls) + 0.5);
53 float4 r1;
54 if (length(myrp) > 0.0) {
55 exp rot generator(myrp, r1);
56 pos = apply rot rotor to point (r1,pos); normal = apply rot rotor to point (r1,normal);
57 }
58 }
59 pos += location;
60 }
61 }
62 }

Figure 9.14: The vertex shader utility functions for mapping to and from a rotor-deformed

space.

- 200 -

Hardware Assisted Geometric Algebra on the GPU

Figure 9.15: A selection of scenes from the penetration demo showing the simulation of a

simple cloth model on the surface of a deformed sphere.

- 201 -

Conclusions and Future Work

10

In this chapter we shall collate all of the findings from the previous chapters

and give them a context in relation to each other. Future applications for the

various findings will also be discussed.

10.1 Review of Achievements

In this section we briefly review the achievements and findings from each

chapter.

10.1.1 Non-Euclidean geometries

In chapter 5, a framework for extending the conformal model to deal with

non-Euclidean geometries was shown, with particular emphasis on hyper-

bolic geometry. It was shown that the geometry represented by a model is

entirely determined by the choice of null-vector representation and rotors.

The pure-rotation and pure-translation rotors for hyperbolic space were de-

Conclusions and Future Work

rived and it was shown that from them the usual distance metric for hyper-

bolic geometry could be obtained.

Already some work using the conformal model to represent non-Euclidean

geometry has found application in cosmology[33] leading, potentially, to im-

portant insights on our universe.

10.1.2 Fractals

In chapter 6 an extension to complex numbers, similar to that of quaternions,

was developed for arbitrary dimension. It was noted that, in GA, quater-

nions are simply special cases of a wider variety of algebras. This extension

was used to form a dimension-agnostic formulation for the classic complex

iteration-based Julia and Mandelbrot fractal sets. In addition an existing dis-

tance estimation formula was shown to be valid using this extension allow-

ing for the ray-tracing of arbitrary dimension sets.

Real-world applications of fractals are notoriously difficult to find but the

opening up of escape-time fractals to non-Euclidean geometries provides a

number of opportunities for ‘recreational mathematics’ and the generation

of attractive images.

10.1.3 Rotor exponentiation

In chapter 7 it was hypothesised that all the rotors we used in the confor-

mal model could be obtained by exponentiating a corresponding generator

bivector the components of which would be geometrically meaningful. A

- 203 -

Conclusions and Future Work

closed form solution for both the exponentiation and subsequent inverse ex-

ponentiation (modulo the identification of rotations by nπ) was derived.

From this an algorithm for directly mapping the components of the gen-

erator to a ×  matrix suitable for use in existing graphical pipelines was

developed. A matching algorithm for directly converting a matrix to a gen-

erator, again identifying rotations of nπ, was also developed.

This particular chapter has almost limitless application. Not only is the

linear space of the bivectors mapped to the non-linear space of rigid-body

transformations but the appropriate inverse mapping was also defined. Us-

ing this method many existing linear optimisation algorithms or interpola-

tion schemes could be extended to deal with rotation and translation simul-

taneously.

10.1.4 GPU-based techniques

In chapter 9 the techniques developed in chapter 7 were implemented on the

programmable portion of modern Graphics Processing Units. Such shaders

were used to develop sample graphics algorithms which made use of the

mappings developed in this thesis.

Specifically simple mesh deformation and collision detection examples

were show. The examples demonstrated that not only was GA a natural lan-

guage for developing such algorithms allowing one to use much geometric

insight but they were also compact enough to program so that they could be

efficiently implemented in hardware.

- 204 -

Conclusions and Future Work

10.2 Future work

Of all the work presented in this thesis perhaps that with the clearest scope

for future work is the work on rotor exponentiation. The ability to map rotors

conveniently into a 6d linear space allows a great deal of algorithms initially

developed for translation and points to be converted into algorithms acting

on rotations. In addition the freedom to move wherever one wishes within

this space coupled with a well defined ‘distance’ between rotors (letting the

components of the bivector be those of a 6d vector and using the normal

Euclidean distance) allows one to investigate minimisation algorithms for

fitting rotations to data.

Already, unpublished work has shown promise for this approach in ani-

mation interpolation and compression using motion capture data and further

work will hopefully be fruitful in this area.

- 205 -

Bibliography

[1] A. Aouady. Julia sets and the mandelbrot set. In H.-O. Peitgen and
D. H. Richter, editors, The Beauty of Fractals: Images of Complex Dynamical
Systems, page 161, Berlin, 1986. Springer-Verlag.

[2] C. Bajaj, H. Lee, R. Merkert, and V. Pascucci. NURBS based B-rep Mod-
els from Macromolecules and their Properties. In C. Hoffmann and
W. Bronsvort, editors, Proceedings Fourth Symposium on Solid Modeling
and Applications, Atlanta, Georgia, pages 217–228. ACM Press, 1997.

[3] M. F. Barnsley and L. P. Hurd. Fractal Image Compression. AK Peters,
Wellesley, MA, USA, 1993.

[4] M. F. Barnsley, A. Jacquin, F. Malassenet, L. Reuter, and A. D. Sloan.
Harnessing chaos for image synthesis. Computer Graphics, 22(4):131–140,
Aug. 1988.

[5] M. F. Barnsley and H. Rising. Fractals Everywhere. Academic Press Pro-
fessional, Boston, 1993. ISBN 0120790610.

[6] C. Blanc and C. Schlick. Accurate parametrization of conics by nurbs.
Computer Graphics and Applications, 16(6):64–71, November 1996.

[7] D. A. Brannan, M. F. Esplen, and J. J. Gray. Geometry. Cambridge Uni-
versity Press, 1999. Ch. 6.

[8] B. Branner. The Mandelbrot set. In R. L. Devaney and L. Keen, edi-
tors, Chaos and Fractals: The Mathematics Behind the Computer Graphics,
volume 39, pages 75–105, Providence, RI, 1989. Amer. Math. Soc.

BIBLIOGRAPHY

[9] S. Buss and J. Fillmore. Spherical averages and applications to spherical
splines and interpolation. ACM Transactions on Graphics, pages 95—126,
2001.

[10] Cambridge Astrophysics Group. Cambridge GA library for Maple.
http://www.mrao.cam.ac.uk/˜clifford/software/.

[11] J. Cameron. Applications of Geometric Algebra, August 2004. PhD First
Year Report, Cambridge University Engineering Department.

[12] Z. Cendes and S. Wong. C1 quadratic interpolation over arbitrary point
sets. IEEE Computer Graphics and Applications, pages 8–16, Nov 1987.

[13] W. Clifford. Applications of Graßmann’s extensive algebra. Am. J. Math.,
26(6):613–627, 1878.

[14] Y. Dang, L. H. Kauffman, and D. J. Sandin. Hypercomplex iterations: dis-
tance estimation and higher dimensional fractals. World Scientific, 2002.
ISBN 9810232969.

[15] C. Doran and A. Lasenby. Geometric Algebra for Physicists. Cambridge
University Press, 2003.

[16] A. Douady. Julia sets and the Mandelbrot set. In H.-O. Peitgen and
D. H. Richter, editors, The Beauty of Fractals: Images of Complex Dynamical
Systems, page 161, Berlin, 1986. Springer-Verlag.

[17] A. Dress and T. Havel. Distance geometry and geometric algebra. Foun-
dations of Physics, 23(10):1357–1374, Oct. 1991.

[18] D. Dunham. Transformation of Hyperbolic Escher Patterns. Visual
Mathematics, 1(1), 1999.

[19] Euclid. The Thirteen Books of Euclid’s Elements translated from the text of
Heiberg. Dover Publications, New York, 1956. Translated with introduc-
tion and commentary by Thomas L. Heath.

[20] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications.
John Wiley & Sons, Ltd., West Sussex, 2003. ISBN 0470848618.

[21] K. J. Falconer. The Geometry of Fractal Sets. Cambridge University Press,
1985.

[22] S. Fontijne, L. Dorst, and T. Bouma. GAIGEN: a Geoemtric Algebra
GENerator, 2001. Available for download at http://carol.wins.uva.
nl/˜fontijne/gaigen/about.html.

- 207 -

http://www.mrao.cam.ac.uk/~clifford/software/
http://carol.wins.uva.nl/~fontijne/gaigen/about.html
http://carol.wins.uva.nl/~fontijne/gaigen/about.html

BIBLIOGRAPHY

[23] S. S. H. U. Gamage and J. Lasenby. New least squares solutions for
estimating the average centre of rotation and the axis of rotation. Journal
of Biomechanics, (35):87–93, 2002.

[24] V. Govindu. Lie-algebraic averaging for globally consistent motion esti-
mation. In Proceedings of CVPR, pages 684–691, 2004.

[25] H. Graßmann. Der Ort der Hamilton’schen Quaternionen in der Aus-
dehnungslehre. Math. Ann., 12:375, 1877.

[26] W. R. Hamilton. Elements of Quaternions. Longmans, Green, 1866.

[27] W. R. Hamilton. The Mathematical Papers of Sir William Rowan Hamilton.
Cambridge University Press, 1967.

[28] D. Hestenes. Old wine in new bottles: a new algebraic framework for
computational geometry. In E. Bayro-Corrochano and G. Sobcyzk, edi-
tors, Geometric Algebra with Applications in Science and Engineering, pages
1–16, Boston, 2001. Birkhauser.

[29] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Calculus: A
unified language for mathematics and physics. Reidel, 1984.

[30] D. Hestenes and R. Ziegler. Projective geometry with clifford algebra.
Acta Applicandæ Mathematicæ, 23:25–63, 1991.

[31] H. Jürgens, H.-O. Peitgen, and D. Saupe. Chaos and Fractals: New Fron-
tiers of Science. Springer-Verlag, New York, 1992. ISBN 038797903.

[32] J. Kessenich, D. Baldwin, and R. Rost. The OpenGL Shading Language,
version 1.05. Feb. 2003.

[33] A. Lasenby. Keynote address SIGGRAPH, 2003.

[34] A. Lasenby, J. Lasenby, and R. Wareham. A covariant approach to geom-
etry using geometric algebra. Technical report, Cambridge University
Engineering Department, 2004.

[35] A. Lasenby, J. Lasenby and R. Wareham. A covariant approach to geom-
etry and its applications in computer graphics. Technical report, Cam-
bridge University Engineering Dept., 2002.

- 208 -

BIBLIOGRAPHY

[36] J. Lasenby and E. Bayro-Corrochano. Analysis and Computation of Pro-
jective Invariants from Multiple Views in the Geometric Algebra Frame-
work. In M. Rodrigues, editor, Invariants for Pattern Recognition and Clas-
sification, volume 42. World Scientific, 2000. Series in Machine Percep-
tion and Artificial Intelligence, 233pp, ISBN 981-02-4278-6.

[37] J. Lasenby, W. Fitzgerald, A. Lasenby, and C. Doran. New geometric
methods for computer vision: An application to structure and motion
estimation. International Journal of Computer Vision, 26(3):191–213, 1998.

[38] H. Li, D. Hestenes, and A. Rockwood. Generalized homogeneous co-
ordinates for computational geometry. In G. Sommer, editor, Geometric
Computing with Clifford Algebra, pages 25—58. Springer, 2001.

[39] M. Lillholm, E. Dam, and M. Koch. Quaternions, interpolation and an-
imation. Technical Report DIKU-TR-98/5, University of Copenhagen,
July 1998.

[40] B. B. Mandelbrot. Les objets fractals: forme, hasard, et dimension. Flammar-
ion, 1975.

[41] B. B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman and
Co., New York, 1982. ISBN 0716711869.

[42] Microsoft Corporation. DirectX 9.0 graphics. Dec. 2002. Available at
http://msdn.microsoft.com/directx.

[43] Microsoft Corporation. High-level shader language. In DirectX 9.0
graphics. Dec. 2002. Available at http://msdn.microsoft.com/directx.

[44] M. Moakher. Means and averaging in the group of rotations. SIAM
Journal of Applied Matrix Analysis, pages 1—16, 2002.

[45] NVIDIA. The Cg Language Toolkit. Jan. 2004. Version 1.2.

[46] NVIDIA. Shader model 3.0 unleashed, 2004. Presentation at SIG-
GRAPH 2004.

[47] NVIDIA. OpenGL driver 1.0-7664 release notes, June 2005.

[48] F. Park and B. Ravani. Smooth invariant interpolation of rotations. ACM
Transactions on Graphics, pages 277–295, 1997.

[49] H.-O. Peitgen and D. Saupe, editors. The Science of Fractal Images.
Springer-Verlag, New York, 1988. ISBN 0387966080.

- 209 -

http://msdn.microsoft.com/directx
http://msdn.microsoft.com/directx

BIBLIOGRAPHY

[50] C. Perwass. The CLU Project. Available for download at http://www.
perwass.de/cbup/clu.html.

[51] L. Piegl. On NURBS: A Survey. IEEE Computer Graphics and Applications,
11(1):55—71, Jan 1991.

[52] D. F. Rogers and J. A. Adams. Mathematical Elements for Computer Graph-
ics. McGraw Hill, 2nd edition, 1990.

[53] D. F. Rogers and R. A. Earnshaw, editors. State of the Art in Computer
Graphics – Visualization and Modeling. Springer-Verlag, New York, 1991.
pp. 225—269.

[54] B. Rosenhahn. Pose estimation revisited, 2003. PhD Thesis, Technical
Report 0308.

[55] B. Rosenhahn, C. Perwass, and G. Sommer. Free-form pose estimation
by using twist representations. Algorithmica, (38):91–113, 2004.

[56] B. Rosenhahn, C. Perwass, and G. Sommer. Pose estimation of free-form
contours. International Journal of Computer Vision (IJCV), 62(3):267–289,
2005.

[57] B. Rosenhahn and G. Sommer. Pose estimation in conformal geometric
algebra part I. Journal of Mathematical Imaging and Vision (JMIV), 22, 2005.

[58] R. Rost. OpenGL 2.0 Overview. 3D Labs, 2002.

[59] P. J. Schneider. NURB curves: A guide for the uninitiated,
March 1996. http://www.mactech.com/articles/develop/issue_25/
schneider.html.

[60] M. Segal and K. Akeley. The OpenGL Graphics System: A Specification
(Version 1.4). OpenGL Architecture Review Board, 2002.

[61] K. Shoemake. Animating rotation with quaternion curves. In SIG-
GRAPH ’85: Proceedings of the 12th annual conference on Computer graph-
ics and interactive techniques, pages 245–254, New York, NY, USA, 1985.
ACM Press.

[62] R. Wareham, J. Cameron, and J. Lasenby. Applications of conformal
geometric algebra in computer vision and graphics. In H. Li, P. J. Olver,
and G. Sommer, editors, IWMM/GIAE, volume 3519 of Lecture Notes in
Computer Science, pages 329–349. Springer, 2004.

- 210 -

http://www.perwass.de/cbup/clu.html
http://www.perwass.de/cbup/clu.html
http://www.mactech.com/articles/develop/issue_25/schneider.html
http://www.mactech.com/articles/develop/issue_25/schneider.html

	Introduction
	Non-Euclidean geometries
	Fractals
	Rotor exponentiation
	GPU-based techniques

	An Overview of Geometric Algebra
	A Brief Overview of Geometric Algebra
	The products
	Rotation via Rotors
	Relation to quaternions
	The Conformal Model of Geometric Algebra
	Observations

	Existing implementations
	CLUCalc & CLUDraw
	Gaigen
	Cambridge GA library for Maple

	Existing uses

	Objects in the Conformal Representation
	A note on methodology
	The equation of a line
	The equation of a plane
	The role of inversion: lines and circles
	Vectors and 2-blades
	Extracting A and B from AB

	Trivectors
	Circles as trivectors
	Lines as trivectors

	4-Vectors
	Spheres as 4-vectors
	Planes as 4-vectors

	Intersections
	Intersecting spheres with spheres or planes
	Intersecting spheres with circles or lines
	Intersecting planes with planes, circles and lines
	Intersecting circles with circles and lines
	Intersecting lines with lines

	Chapter summary

	LibCGA — A Library for Implementing GA-based Algorithms
	Requirements
	Overview
	Implementation Details
	Coding style
	Product Table Generation
	Grade Tracking

	Visualising Objects within the Algebra
	Point Pairs
	Lines
	Planes
	Circles
	Spheres

	Chapter summary

	Non-Euclidean Techniques
	Hyperbolic Geometry
	Extending the Conformal Model
	Geometric Objects in Hyperbolic Geometry
	Extension to Higher Dimensions and Other Geometries

	Non-Euclidean Visualisation Methods
	NURBs
	Rendering d-lines
	Rendering `d-planes'

	Chapter summary

	Generating Fractals using Geometric Algebra
	Fractals from Complex Iteration
	The Mandelbrot Set
	The Julia Set

	Extending Complex Numbers
	Moving to Higher Dimensions
	The Generalised Mandelbrot Set
	The Generalised Julia Set
	Ray Tracing

	Moving to Hyperbolic Geometry
	The Hyperbolic Mandelbrot Set
	The Hyperbolic Julia Set

	Rotors as Exponentiated Bivectors
	Form of exp(B) in Euclidean space
	Checking exp(B) is a rotor
	Method for evaluating (R)
	Mapping Generators to Matrices
	Method
	Finding H from a generator
	Mapping H to the corresponding generator

	Chapter summary

	Rotor Interpolation
	Interpolation via Generators
	Piece-wise linear interpolation
	Quadratic interpolation
	Alternate methods
	Interpolation of dilations

	Form of the Interpolation
	Path of the linear interpolation
	Pose of the linear interpolation

	Chapter summary

	Hardware Assisted Geometric Algebra on the GPU
	An Overview of GPU Architecture
	GPU Programming Methods
	DirectX shader language
	OpenGL shader language
	The Cg toolkit from nVidia

	A Cg Implementation of Generator Exponentiation
	Mesh Deformation
	Method
	GPU-based implementation
	Quality of the deformation
	Performance

	Dynamics
	Collision detection via deformation
	A suitable deformation scheme
	Implementation

	Chapter summary

	Conclusions and Future Work
	Review of Achievements
	Non-Euclidean geometries
	Fractals
	Rotor exponentiation
	GPU-based techniques

	Future work

